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Abstract 

Members of the Larger Benthic Foraminiferal (LBF) family Orbitolinidae occurred from the 
Cretaceous to the Paleogene, however, they were most diverse during the mid-Cretaceous, and 
dominated the agglutinated LBF assemblages described from limestones of that period. Various 
orbitolinid species have been used to zone and date lithologies formed in the shallow, warm 
waters of the Aptian to the early Cenomanian, and many, sometimes inaccurate, generic and 
sub-generic nomenclatures have been proposed to differentiate the often-subtle morphological 
changes that orbitolinids exhibit over time. Also, until now, it has not been possible to develop an 
effective global overview of their evolution and environmental development because descriptions 
of specimens from Asia have been relatively rare. Following our recent study of over 1800 
orbitolinid-rich thin sections of material from 13 outcrops of Langshan limestone, from the Southern 
Tibetan Plateau, and from the Barito Basin, South Kalimantan, Indonesia, it has been possible 
to compare the stratigraphic ranges of these orbitolinids with previously described Tethyan and 
American forms, based on the use of a planktonic zonal (PZ) scheme, itself tied to the most 
recent chronostratigraphic scale. This has allowed the reconstruction of the phylogenetic and 
paleogeographic evolution of the orbitolinids from their Valanginian origin in the Tethys. Although 
the Tethys remained the paleogeographic centre for the orbitolinids, it is inferred here for the first 
time that a bi-directional paleogeographic migration of some orbitolinid genera occurred from 
the Tethys to the Americas and also to the Western Pacific region. Our observations and dating 
suggest that global marine regressions in the Aptian were coincident with, and may well have 
facilitated, these orbitolinid transoceanic migrations. Migration stopped however after rising sea 
level in the early Albian appears to have again isolated these provinces from each other. Tectonic 
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forces associated with the subduction of the Farallon Plate and further sea level raises led to the 
opening of the Western Interior Seaway in North America, which correlates with, and may have 
been the cause of, the middle Albian (top of PZ Albian 2) extinction of the American orbitolinids. 
The extinction of the orbitolinids revealed that the Western Pacific province was split into two 
sub-provinces, with extinction occurring at the end of the early Albian (top of PZ Albian 1) in 
the Northwest Pacific sub-province, and at the end of the Albian (top of PZ Albian 4) in the sub-
province that is today South East Asia (on the margins and west of the Wallace Line). The final near 
extinction of the orbitolinids occurred at the end of the Cenomanian in the Tethyan province, which 
coincides with, and may have been caused by, global anoxic oceanic events that correlate with 
a near-peak Mesozoic eustatic sea level high-stand that led to the overall global collapse of the 
paleotropical reef ecosystem at that time. 

Keywords: Foraminifera, orbitolinids, mid-cretaceous, biostratigraphy, phylogeny, palaeogeographic 
distribution, extinctions, global anoxic events, sea-level changes, palaeoenvironment, climate, ecology

Introduction
The Orbitolinidae are an agglutinated, and now extinct, family of the Larger Benthic Foraminifera 
(LBF). Orbitolinidae were present in the warm, shallow marine waters of the Early Cretaceous 
to the early Oligocene, however, they were most diverse during the mid-Cretaceous. During the 
Early to mid-Cretaceous (Valanginian to early Cenomanian), there was an identifiable increase 
in the complexity of their morphological structure, which enabled them to house within their 
tests symbiotic algae [1], and it is these forms which are the subject of this paper. Traditionally, 
orbitolinids are considered to define two major, distinct paleogeographic realms, namely those of 
the Americas and the Tethys (see BouDagher-Fadel [1]), but in this study we document forms from 
the Western Pacific that are distinct from their Tethyan forebears, and so define a third orbitolinid 
province.

The symbiotic orbitolinids were rock-forming organisms, and they are found in association with 
other marine forms, including planktonic foraminifera. This coexistence with planktonic forms, 
enables their stratigraphic ranges to be defined very precisely, as they can be tied to the high 
resolution planktonic zonal (PZ) dating scheme of BouDagher-Fadel ([2]; see Fig. 1), which itself is 
tied to the absolute time scale of Gradstein et al. [3].

Early to mid-Cretaceous orbitolinids have been described from Tethyan limestones from, for 
example, the Mediterranean [4], Southwest England [5–10], Spain [11, 12], France [13], Italy [14], 
Israel, Lebanon and Syria [15], Yemen [16], Oman [17–19], Saudi Arabia [20, 21], the United Arab 
Emirates [22], Iran ([23–27]; Rahiminejad and Hassani, 2016), Afghanistan [28], and Tibet [29–31]. 
They are also reported from the Northwest Pacific [32], Japan and Sakhalin [33–44], and in Africa, 
where they are found in Ethiopia [45], Somalia (e.g. [46–48]) and Tanzania [49]. 

Furthermore, orbitolinids have been reported from the northwestern Atlantic, off the Flemish Cap, 
Newfoundland [50, 51], and have been described from the Caribbean and the Americas [52], 
Mexico [53–55], and Venezuela [56]. 

During their existence, the structurally complex orbitolinids showed relatively rapid phylogenetic 
evolution, developing many stratigraphically short-ranged species, which when combined with 
the PZ scheme (see Fig. 1) act as a very important and precise index fossil group for the shallow-
marine environments of the mid-Cretaceous Tethys [1, 6, 31, 57]. As a result, they have been widely 
adopted as a biostratigraphic tool by industry in the exploration of Middle Eastern and other oil and 
gas fields. 

In this paper, the evolution and paleogeographic development of these symbiotic, morphologically 
complex orbitolinids is inferred from the re-analysis of the published data referred to, and combined 
with new observations from over 1800 thin sections of material from 13 outcrops of Langshan 
limestone of the Southern Tibetan Plateau (see Fig. 2), the Sangzugang Formation in Southern 
Lhasa subterrane (see [60]), the Xiagezi-II section of the Langshan Formation in southern part of 
the Northern Lhasa subterrane (see [59, 62]), the Azhang and Guolong sections from the Langshan 
Formation in the Northern Lhasa subterrane (see [31]), the Jingshughan, Langshan, Xiongba, 
Xiongmei, Baoji, Daya, Gegi, Letie and Zulong sections [63], and the Jiarong and Laxue sections 
from the Linzhou Basin (see [31]). In addition, material has been studied from the western flank 
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Figure 1

The diagnostic first and last 
occurrences of Cretaceous planktonic 
foraminiferal species, calibrated against 
the most recent biostratigraphic time 
scale and radio-isotope data (after 
BouDagher-Fadel [2]).

of the Meratus Mountains, an uplifted accretionary collision complex that records suturing of 
East Java–West Sulawesi to the Sundaland margin during the mid-Cretaceous (see Fig. 3). The 
uplifted complex now forms the eastern boundary of the Barito Basin, South Kalimantan, Indonesia 
(see [60]).

By correlating these observations and the literature data with our high-resolution PZ scheme 
([2], Fig. 1), we are able to infer, for the first time, a comprehensive, global synthesis of the 
biostratigraphic, phylogenetic, and paleogeographic evolution of these orbitolinids. We infer that the 
earliest morphologically complex orbitolinids evolved in the Tethys from primitive Valanginian forms 
such as Valdanchella, Paleodictyoconus and Campanellula (Fig. 4). More complex forms developed 
rapidly into different Tethyan phylogenetic lineages (e.g. Figs 4 and 5). It appears that major, global 
sea level regressions starting in the early Aptian (PZ Aptian 1, 125.0 Ma) and in the late Aptian (PZ 
Aptian 4, 116.5 Ma; see Fig. 6), correlate with and probably facilitated bidirectional transoceanic 
migration of orbitolinids. One migration was from the Tethys to the previously recognised American 
province, but a second migration was from Tethys to the newly defined Western Pacific province 
(see Fig. 7). These migrations stopped after rising sea level during the early Albian (PZ Albian 1) 
appears to have isolated the provinces one from another. 

The isolated orbitolinids of the Northwest sub-province of the Western Pacific (present day Japan) 
became extinct at end of the early Albian (top of PZ Albian 1), whereas those in the isolated 
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Figure 2

(A) Simplified tectonic map of the 
Tibetan Plateau and adjacent regions, 
showing the Lhasa terrane in the 
context of the Tibetan Plateau [58]. 
JSSZ, Jinsha suture zone; BNSZ, 
Bangong-Nujiang suture zone; 
IYSZ, Indus-Yarlung suture zone. (B) 
Simplified geological map of the Lhasa 
terrane modified from [59]. SGAT, 
Shiquan-Gaize-Amdo thrust; GST, 
Gaize–Selin Co thrust; GLT, Gugu La 
thrust; ST, Shibaluo thrust; ELT, Emei 
La thrust; GT, Gangdese thrust system; 
GCT, Great Counter thrust. Section 1 
from the Xigaze forearc basin; Sections 
2 and 3 from the Linzhou basin; 
Sections 4, 5 and 6 from the Coqen 
basin.

Figure 3

Cenozoic geology of the Barito and 
Asem-Asem Basins (modified from [61]).

American province became extinct at the end of PZ Albian 2 (106.7 Ma). All forms in the sub-
province that is today South East Asia (on the margins and to the west of the Wallace Line) went 
extinct at the end of the Albian (top of PZ Albian 4). The ‘hotspot’ for orbitolinid evolution,  
however, remained in Tethys, where environmental conditions continued to contribute to their 
success until the end of the Cenomanian, when virtually all symbiotic, morphologically complex 
orbitolinids became extinct, as indeed did many of the other agglutinated LBFs that dated from the 
Early Cretaceous and Jurassic (see [1]). These extinctions coincided with an anoxic oceanic event 
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Coskinolinoides
(Aptian - Albian)

Orbitolina (Albian 3 - Cenomanian)

Periembryonic chambers

Proloculus

Deuteroconch

Urgonina
Barremian

Falsurgonina
(Barremian 3 - Aptian 1)

Praeorbitolina
(Aptian - Albian)

Mesorbitolina
(Aptian - Cenomanian 1)

Group (ii)

Simplorbitolina
(Aptian - Albian)

Group (iv)

Campanellula
(Valanginian 1 -Barremian 3)

Group (i)

Group (v)

Valdanchella
(Valanginian)

Group (ii)

Orbitolinopsis
(Aptian - Albian 1)

Group (iii)

Palaeodictyoconus
(Valanginian 2 - Aptian)

Dictyoconus
(Aptian 1 - Oligocene)

Neorbitolinopsis
(Albian - Cenomanian 1)

Group (ii)

Eopalorbitolina
Barremian

Palorbitolina
(Barremian 3 - Aptian) Palorbitolinoides

(Aptian - Albian 1)

Figure 4

Gradual morphological changes from 
primitive orbitolinids to the advanced 
Orbitolina in Tethys.
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Figure 5

Example of evolutionary Tethyan 
lineages from morphological Group (ii) 
to (v).

[64], and correlate with a near-peak Mesozoic eustatic sea level high-stand (see Fig. 6,  
and [65]). 

Morphological characteristics of orbitolinids 
The orbitolinids are members of the order Textulariida, which have agglutinated tests that are made 
of foreign particles bound by organic/calcitic cement. They are characterised by having conical 
tests, subdivided into numerous chambers, and are usually a few millimetres in height and diameter 
(although as noted, some forms attained diameters of 5 cm or more). The numerous uniserial 
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123413 2412

Figure 6

Variation in sea-level during the mid-
Cretaceous based on Miller et al. [60]
correlated to the boundaries of the PZ 
after BouDagher-Fadel [2] and showing 
dominant assemblages at the top of 
regression and transgression phases.

Figure 7

The provincial distribution of the 
orbitolinids during the Early Cretaceous, 
Early Albian in the Tethys (1), the 
Western Pacific (2), and the Americas 
(3), with paleo-oceanic currents shown 
by the white arrows.

discoidal chambers are partially subdivided by radial or transverse partitions, or pillars. They have 
cribrate, areal apertures (see Fig. 8). 

The Cretaceous morphologically complex orbitolinids are divided into the dictyoconines and 

orbitolinines, and range from the Valanginian to the Cenomanian. They are divided into the following 
five morphological groups (see [1]):

(i) Orbitolinids with no complex central zones (e.g. Campanellula, PZ Valanginian 1). They lack 
thick radial partitions and pillars in the central zone.

(ii) Orbitolinids with a complex central zone and radial partitions thickening away from 
the periphery and breaking up into pillars in the central zone, first appeared in the late 
Valanginian with developed peripheral tiered rectangular chamberlets. They evolved into 
the dictyoconines (e.g. Paleodictyoconus, PZ Valanginian 2, Fig. 4; Paracoskinolina, PZ 
Barremian 1–Albian 4), or into the orbitolinines (e.g. Urgonina, PZ Barremian 1, Fig. 4) from 
forms with the outer parts of their chambers lacking partitions but with interseptal pillars 
connecting the adjacent septa.

1

2

2

3
1

Group (i) to (v) Group (v)

Group (v)

Group (v)
Group (ii)

Group (v)
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(iii) Orbitolinids with radial partitions thickening away from the periphery to anastomose 
centrally around the aperture and form a reticulate zone in the transverse section, also  
first appeared in the late Valanginian (e.g. Valdanchella, PZ Valanginian 2). The peripheral 
zones of their chambers are subdivided into rectangular chamberlets by fine radial 
partitions (Fig. 4).

(iv) Orbitolinids with radial partitions that became zigzagged, thickening and fusing centrally, 
giving a stellate appearance in the transverse section, first appeared in the Aptian (e.g. 
Simplorbitolina, PZ Aptian 1–Albian 4). Their tests may have tiered peripheral chamberlets (e.g. 
Dictyoconella, PZ Cenomanian 3–Maastrichtian 3, Fig. 4).

(v) Orbitolinids with radial partitions thickening, with triangular cross-sections away from 
the periphery and anastomosing in the central area, first appeared in the Barremian (e.g. 
Eopalorbitolina, PZ Barremian 1, Fig. 5) and evolved rapidly in the mid-Cretaceous. The test 
of these orbitolinids is defined by the shape of the embryonic apparatus, and by the size and 
shape of the chamber passages that can be seen in tangential sections. The earliest formed 
chambers of the megalospheric generation can form a complex embryonic apparatus, 
which can be divided into a protoconch, a deuteroconch, a sub-embryonic zone and peri-
embryonic chamberlets (see Plate 1, b, e; Fig. 4). In the axial section, the embryo is located 
at the apex of the cone, followed by a series of discoidal chamber layers. The embryonic 
apparatus evolved from a simple apparatus, consisting of a large globular fused protoconch 
and deuteroconch, followed by peri-embryonic chambers as in Palorbitolina, to an embryonic 

b1

b2

c d

d1

d2 d3

d4

e1 e2

e3 e4

e5 e6

e7 e8

1

2

Figure 8

The test architecture of Orbitolina (not 
to scale). (1) Test dissected in several 
places to show the internal structures 
(after Douglass [52]); (2) Diagrams 
showing micro-structures of Orbitolina 
exposed by tangential sections cut 
progressively deeper below the 
epidermis:

a, Megalospheric embryonic apparatus; 
b, slightly eroded surface exposing 
sub-epidermal cells; b1–b2, regular/
irregular arrangement of secondary 
epidermal cells (stage III); c, primary 
sub-epidermal cells (stage II); d, 
marginal chamberlets (stage I) with 
residual traces of vertical primary sub-
epidermal plates only; d1–d4, sections 
through marginal chamberlets between 
(c and d) and the beginning of the true 
radial chamber-passages with canals 
(e1, e3, e5, e7). e1–e2, Radial chamber 
passages sub-rounded, canals short, 
wall thickness relatively small; e3–e4, 
radial chamber passages triangular, 
canals long, wall thickness relatively 
great; e5–e6, radial chamber passages 
initially rectangular, with simple 
perforations, wall thickness small; e7–
e8, radial chamber passages irregular 
– rounded originating from vertical pairs 
of primary sub-epidermal cells, canals 
short, wall thickness small; f, main 
triangular partitions with a zigzag shape 
when seen deeper in the test; g, the 
complex central zone.
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apparatus divided into a protoconch and deuteroconch but a not completely divided sub-
embryonic zone, as in Praeorbitolina. This latter evolved in turn into forms in which the 
deuteroconch and sub-embryonic zone are more or less of equal size, as in Mesorbitolina 
(Plate 1, d). In Conicorbitolina (Plate 3, f) the marginal zone became extensively divided by 
vertical and horizontal partitions, while in Orbitolina the deuteroconch is highly subdivided 
and of much greater thickness than the sub-embryonic zone (see Figs 4, 5; [6, 28, 31, 57, 66, 
67]). In transverse section, the chambers are seen divided into a marginal zone, with sub-
epidermal partitions, and a central zone with radial partitions (Plate 1, a; Figs 8.1–8.2, 9). The 
chamber passages are formed in the radial part of the central zone of each chamber layer 
(Figs 8.1–8.2, 9h), where each chamber passage is subdivided by vertical main partitions, 
which are prolongations of the vertical main partitions of the marginal zone (Figs 9a–f, h). 
The radial partitions (Fig. 9f) in advanced orbitolinids (e.g. Mesorbitolina, Orbitolina) thicken 
away from the periphery and anastomose in the central area, producing an irregular reticular 
network (Plate 1, c, f–h; Figs 9g, i–j; Fig. 10b). In cross-section, the chamber passages can 
be triangular (Figs 9c, 10a), rectangular (Fig. 10c) or oval, or can show a gradation between 
shapes (Fig. 9e) [28]. In the radial zone of Orbitolina, the stolons are arranged in radial rows 
alternating from one chamber to the next one (see [1]). Their alternating position would have 
obliged the protoplasm to flow in an oblique direction [66]. In the annular radial zone of the 

a b

c d

e

f g h

marg
rad

ret
marg

rad

Plate 1

Scale bars: a, c = 1 mm; b, d–h = 0.5 
mm. Key words: marg = marginal zone; 
rad = radial zone; ret = reticular zone. 
All samples are deposited in School of 
Earth Sciences and Engineering Nanjing 
University.

a–c, f. Mesorbitolina aperta (Erman), 
Langsham Formation, Tibet, PZ Albian 
3–Cenomanian 1: a) Axial section 
through the megalospheric embryonic 
apparatus; b) basal section of the 
megalospheric embryonic apparatus; 
c) thin section showing the details of 
the radial zone; f) thin section through 
the reticular zone.

d. Mesorbitolina sp., Tibet, Aptian. Thin 
section through the marginal zone.

e. Mesorbitolina subconcava (Leymerie), 
Indonesia, PZ Albian 1. Basal section 
through embryonic apparatus showing 
the periembryonic chambers.

g–h. Mesorbitolina texana (Roemer), 
Tibet, PZ Aptian 4. Random thin 
sections: g) showing details of the 
radial and reticular zones; h) basal view 
showing the zigzag main partitions with 
apertural pores at the reentrants. The 
partitions are broken up in the central 
complex reticular zone.
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conical test (Plate 1, a, c, g), radial septula subdivide the chambers into radial compartments 
with various thickness and textures (Plate 1, h; Fig. 9f, h, k–r), narrowing towards the centre 
to fuse into a reticular network (Plate 1, a, f, h; Fig. 9g, i, j) which minimizes the volume of 
chamberlet cavities (Plate 1, a, f–h).

Biostratigraphy, phylogeny and paleogeographic distribution of the 
orbitolinids
The orbitolinids are very useful biostratigraphic markers in early to mid-Cretaceous Tethyan 
carbonate, siliciclastic or mixed deposits [28, 31, 68]. They have short ranges and are, with 

a b

c de

f g h

I j

k l m

n o

p q r

Figure 9

(a–b) Diagrammatic axial sections 
of orbitolinids; a, showing closely 
spaced chamber layers with primary 
horizontal sub-epidermal plates only; 
b, showing widely-spaced chamber 
layers with primary and secondary 
horizontal sub-epidermal plates. 
(c–e) Diagrammatic basal sections of 
orbitolinids; c, marginal zone broad, 
marginal chamberlets triangular, 
radial walls thick, straight; d, marginal 
zone broad, marginal chamberlets 
rectangular, radial walls thin, zigzag; 
e, marginal zone narrow, marginal 
chamberlets sub-triangular, radial 
walls moderately thick, vertical primary 
sub-epidermal plates thickening inward 
with some prolonged as radial walls. 
Note: In species having triangular 
radial passages, the thickness of radial 
walls as seen in basal views will vary 
according to the position on the section 
just above or just below a chamber 
floor. (f–j) Diagrams illustrating radial 
and reticular zones of orbitolinids as 
seen in basal views; f, radial partitions; 
g, reticular partitions; h, radial chamber 
passages; i, radial and reticular 
chamber passages; j, complex reticular 
zone, no radial zone. (k–r) Diagrams 
showing various textures of the central 
zone in Orbitolina as observed in axial 
and oblique sections; shaded areas and 
lines represent shell material. (k–o) Axial 
sections; k, wall and floor thickness and 
chamber diameters sub-equal; chamber 
layers clearly marked and connected 
by short, sub-vertical canals; l, wall 
and floors thin; chamber layers clearly 
connected by simple perforations and 
clearly recognisable by alignment of 
longitudinal segments of chamber 
passages in the radial zone; m, wall 
and floors thin; chamber layers clearly 
connected by simple perforations but 
not clearly recognisable; the section 
is cut through the reticular zone and 
chamber segments are all more or less 
transverse; n, wall thickness small, floor 
thickness relatively great; chamber 
layers clearly marked and connected 
by oblique canals not visible in axial 
sections; o, wall and floor thickness 
great; chamber layers not clearly 
recognizable owing to wide spacing 
of chamber segments; oblique canals 
not visible in axial sections. (p–r) 
oblique sections; p, oblique section 
corresponding to (a) above; labyrinthic 
texture; canals (when visible) not clearly 
differentiated from chamber segments; 
q, oblique section corresponding to 
(c) above; that corresponding to (b) 
would be similar but would show a few 
longitudinal chamber segments; cellular 
texture; r, oblique section corresponding 
to (d) or (e) above; dentritic texture; 
small chamber segments connected by 
long, oblique canals forming a roughly 
polygonal network. 
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practice, easily identified in thin sections (e.g. see Plates 2 and 3). Orbitolinids show provincialism 
unlike some LBFs of the period (e.g. the miliolides). Traditionally, they have been considered to 
define two major, distinct paleogeographic realms, namely those of the Americas and the Tethys 
(see [1]). 

Many forms from the morphological Group (i) described evolved gradually to more advanced forms 
of Groups (ii) to Groups (vi). Notable and characteristic paraphyletic lineages include:

 • Campanellula–Paracoskinolina–Coskinolinoides–Dictyoconus (PZ Valanginian 1–Cenomanian 3; 
all forms in this group became extinct in the Cenomanian, except Dictyoconus, which persisted 
to the Oligocene). The evolutionary trend of this Group (i)–Group (ii) lineage is characterised 
by an increase in test diameter and the development of increasingly complex radial partitions 
radial partitions thickening away from the periphery, that break up into pillars in the central 
zone, forming highly developed and complex layers of chamberlets. 

A

B

C

Figure 10

Enlargement of parts of Palorbitolina 
lenticularis (Blumenbach) figured by 
BouDagher-Fadel [1], scale bar = 100 
μm. (A) Transverse section showing 
the triangular main partitions; (B) the 
same transverse section showing the 
central complex reticular part of the 
test; (C) the same transverse section 
showing the subdivision of the marginal 
chamberlets into cellules/chamberlets. 
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 • Valdanchella–Paleodictyoconus–Montseciella–Rectodictyoconus–Simplorbitolina–
Neorbitolinopsis (PZ Valanginian 1–Cenomanian 1). The evolutionary trend of this  
Group (ii)–Group (v) lineage is characterised by the increase in size, a gradual enlargement of 
the whole embryo the development of the megalospheric embryo in a centric or near centric 
position, and the development of increasingly complex radial partitions, becoming zigzagged 
with a stellate appearance in the transverse section (as in Simplorbitolina) or thickened 
and fused centrally forming highly developed and complex layers of chamberlets (as in 
Neorbitolinopsis). 

 • Urgonina – Eopalorbitolina - Palorbitolina – Palorbitolinoides (PZ Barremian 1–Albian 1). The 
evolutionary trend of this Group (ii)–Group (v) lineage (see Fig. 5) is related to the formation of 
peripheral, tiered, rectangular chamberlets in two or more series, the shape and position of the 
embryonic apparatus from a bi-chambered embryo in a clear eccentric position, with a missing 
peri-embryonic zone in Eopalorbitolina (see Fig. 5), to the development and the increase in 
size of the peri-embryonic zone to embrace more and more of the embryonic apparatus, 

a b

c d

e f

Plate 2

Scale bars = 1 mm. All samples are 
deposited in School of Earth Sciences 
and Engineering Nanjing University.

a. Palorbitolina lenticularis 
(Blumenbach), Jiarong section, TLK1a, 
PZ Aptian 2, sample 14LZ13.

b. Praeorbitolina cormyi Schroeder, 
Laxue section, TLK1a, PZ Aptian 2, 14 
LZ12

c. Palorbitolinoides orbiculatus Zhang, 
Langsham section, TLK1a, PZ Aptian 
2, 16SL 02.

d. Mesorbitolina aperta (Erman). 
Guolong section, TLK1h, PZ 
Cenomanian 1, 13GL33.

e. Palorbitolinoides hedini Cherchi and 
Schroeder, Langsham section, TLK1e, 
PZ Albian 2, 16SL45.

f. Mesorbitolina subconcava (Leymerie), 
Langsham section, TLK1c, PZ Aptian 
4b, 16SL29.
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surrounding the upper half of the nearly centric embryonic chamber in E. transiens, and 
becoming completely annular surrounding the upper part of the centric embryonic chamber in 
Palorbitolina lenticularis (Figs 5, 10). In Palorbitolinoides (e.g. Palorbitolinoides hedini Cherchi 
and Schroeder [69], Plate 2, e) the large and flattened embryonic chamber is surrounded by a 
developed inflated peri-embryonic zone. 

 • Praeorbitolina–Mesorbitolina–Orbitolina–Conicorbitolina (PZ Aptian 1–Cenomanian 3). The main 
evolutionary characters in this Group (v) lineage are the position of the embryonic apparatus, 
which is in an eccentric position in earlier forms (e.g. Praeorbitolina), but centrally placed in 
advanced forms, consisting of the protoconch and the deuteroconch (e.g. Mesorbitolina). In 
Conicorbitolina (PZ Albian 4–Cenomanian 1) the large proloculus is divided into a protoconch 

ba

c d

e f g

Plate 3

Scale bars = 1 mm. All photos are from 
sections from the western flank of 
the Meratus Mountains, Barito Basin, 
Southeast Kalimantan, Indonesia. 
All samples are deposited in UCL 
Collections.

a–c. Mesorbitolina texana (Roemer), PZ 
Albian 1, BBr-14. 2–3) vertical sections. 

d, g. Palorbitolinoides orbiculatus 
Zhang, PZ Albian 1, BBr-14.

e. Mesorbitolina subconcava (Leymerie), 
PZ Albian 1, BBr-14, oblique transverse 
section through embryonic apparatus.

f. Conicorbitolina sp., PZ Albian 4, 
BBr-22.
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and deuteroconch, with the marginal zone becoming extensively divided by vertical and 
horizontal partitions (Plate 3, f; Fig. 5). The main evolutionary characters of this Orbitolina  
(PZ Albian 3–Cenomanian 3) is the increase in size of the apically situated embryonic 
apparatus, where the deuteroconch becomes about 3 times thicker than the sub-embryonic 
zone (Figs 5, 9). 

On the basis of this study, and using the lineages described, we are able to establish for the 
first time that there were in fact three distinct paleogeographic provinces for these symbiotic, 
morphologically complex orbitolinids (see Fig. 7); namely the previously defined American province 
(including current day Texas, Venezuela, Mexico), a Tethyan province (including Europe and the 
Flemish Cap off Newfoundland, Arabia, Turkey, Iran, Lebanon, Oman, Syria, Qatar, Tibet), and 
a newly identified Western Pacific province, which is divided into two sub-provinces; the sub-
province of Northwest Pacific, which includes Japan and the Philippine island of Cebu, and a sub-
province that includes what is today South East Asia (west of the Wallace Line). 

In Tethys, morphologically complex orbitolinids and their precursors are common from the 
Valanginian (PZ Valanginian 1) to the Cenomanian (PZ Cenomanian 3), and exhibit several of the 
phylogenetic lineages described, while in the Americas orbitolinids are only found between the 
early Aptian (PZ Aptian 1) and middle Albian (PZ Albian 2), and are predominantly represented 
by the Group (v) genera Palorbitolina and Mesorbitolina. In the Western Pacific, unidentified and 
unconfirmed orbitolinids have been listed in the literature as dating from the late Hauterivian to the 
early Aptian (see [41]). These early forms are however contested, but the Group (v) Praeorbitolina–
Mesorbitolina lineage is definitely confirmed from PZ Aptian 1 to PZ Albian 1 in Northwest Pacific 
sub-province and to PZ Albian 4 in the South East Asia sub-province. 

From this global pattern, we infer that the original hotspot for the evolution of the complex 
orbitolinids was Tethys, but as will be described, following migration events in the early Aptian 
out of Tethys, some lineages of the orbitolinids spread to the other provinces. It seems that the 
migration stopped after the early Albian, and that the provinces were again isolated. There then 
developed provincial, parallel, but specifically distinct evolutionary trends, until the subsequent 
provincial extinctions in the Americas and the West Pacific (see Fig. 11). 
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Range chart for some key orbitolinid 
species from Group (v) in the Tethyan 
and Western Pacific, and the American 
provinces.
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The Tethys

Throughout the Tethyan province orbitolinids of Groups (i–v) evolved many lineages. They became 
morphologically complex and widespread, and are often associated with calcareous algae. Their 
main Tethyan lineages which evolved from Group (i) include:

 • Group (ii)–Group (iv) Valdanchella–Paleodictyoconus–Montseciella–Rectodictyoconus–
Simplorbitolina–Orbitolinopsis (PZ Valanginian 1–Cenomanian 1);

 • Group (v): Eopalorbitolina–Palorbitolina–Palorbitolinoides (PZ Barremian 1–Albian 1);

 • Group (v): Praeorbitolina–Conicorbitolina (PZ Aptian 1–Cenomanian 1).

The orbitolinid assemblages of Western Tethys, the southern Neo-Tethys margin and of southwest 
Europe are similar to those of the Tibetan carbonate platforms, and they all form a part of the 
Tethyan realm [31]. All cosmopolitan orbitolinids appeared in the Tethys before spreading to other 
provinces. For example, in Tethys, P. lenticularis (Plate 2, a; Fig. 10) first occurred in late Barremian 
(PZ Barremian 3, 127 Ma; [31]), 2 million years before its first appearance in the American and 
Western Pacific provinces at the beginning of the Aptian (PZ Aptian 1, 125.0 Ma). The oldest 
P. lenticularis recorded in what is today the ‘American’ continent was recorded by Schroeder 
and Cherchi [51] from the late Barremian of the Flemish Cap, North West Atlantic. From the 
palaeogeography of the time, however, we infer that at this stage the Flemish Cap was the extreme 
extension of the north western Tethyan realm and was isolated from the more southerly parts of the 
American province (see Fig. 7).

The earliest Mesorbitolina (e.g. Mesorbitolina lotzei), likewise, appeared first in Tethys, in PZ Aptian 
2. The cosmopolitan Mesorbitolina parva–Mesorbitolina texana first appearing in the late Aptian 
(PZ Aptian 3, 119.5 Ma), 3 million years earlier than in the American and Western Pacific provinces 
where their first appearances are recorded in PZ Aptian 4, 116.5 Ma [6, 31, 32, 52]. Subsequent to 
its first appearance, the Tethyan Mesorbitolina evolved many phylogenetic lineages, which show 
the typical evolution from having a simple embryonic apparatus to developing a more complicated 
one. The most common late Aptian–Cenomanian (PZ Aptian 4–Cenomanian 1) lineage being the 
M. texana–M. aperta lineage (see Plate 1, a–c, 6; Plate 2, d; Fig. 5), where the open deuteroconch 
in the square embryonic apparatus evolves into a deuteroconch subdivided in the upper part by 
several partitions of different sizes, whereas the lower part exhibits an irregular network of partitions 
[31]. No equivalent lineage is found in the other provinces, suggesting that by this stage the 
provinces were again isolated one from another. 

Sea bed
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micrite
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Figure 12

The facies range of the dominant 
orbitolinids in a Tethyan carbonate 
shelf. Integrated reef/ramp model for 
Cretaceous carbonates. The ramp 
model is indicated by the blue dotted 
line. In the case of gently sloping ramp, 
the outer ramp lithofacies are made of 
mudstones and wackestones, while 
in the middle ramp mudstone with 
carbonate nodules would develop. 
Orbitolinid photos are from the Langhan 
Formation, Tibet (see [31])
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All the main Tethyan orbitolinids became extinct at the end of the Cenomanian, with the exception 
of rare forms which persist in the Late Cretaceous of the Mediterranean Neo-Tethys, e.g. 
Pseudorbitolina, Orbitolinella, Calveziconus, Dictyoconella and Dictyoconus which continues to the 
Oligocene.

The Western Pacific

In the Western Pacific province, orbitolinids limestones, associated mainly with Cretaceous arc 
volcanics, form two sub-provinces. One occurs north along the Eurasian continental margin to the 
Philippines and Japan, and the other is to the south, along a belt near the Early Cretaceous margin 
of Sundaland, in what is today South East Asia [36, 70]. 

In the Northwest Pacific sub-province, reported occurrences of orbitolinids are patchy with 
numerous doubtful identifications, but those with certain identification belong to Group (v). 
Palorbitolina lenticularis is first recorded from the beginning of PZ Aptian 1 (125.0 Ma, 2 million 
years after its first appearance in Tethys) in the eastern Philippines (Cebu) and Japan [32, 70].

In the South East Asian sub-province, orbitolinids are more common and occur from PZ Aptian 1 
(125.0 Ma) to PZ Albian 4 (100.5 Ma). In West Sarawak and Northwest Kalimantan, orbitolinid-rich 
beds are recorded from the early Aptian (PZ Aptian 1) of Pedawan and Seberoeang Formations 
[71]. In North-Central Kalimantan orbitolinids are documented from the Aptian to early Albian (PZ 
Aptian 1–Albian 1) of the Selangkai Formation in the Upper Kapuas River region [70]. Other Early 
Cretaceous orbitolinid localities include Southeast Kalimantan along the Meratus Mountains front 
East of Martapura [72], in South Sumatra, Ratai Bay, Lampung [73], in the Gumai Mountains [74], 
Central Java [75], and West Sulawesi [76, 77]. 

The Western Pacific orbitolinids are mainly of Tethyan origin belonging to Group (v). Aptian forms 
originally described as endemic to the South East Asia sub-province are in fact found to be 
synonyms to the Tethyan forms. As an example, Orbitolina scutum and Orbitolina trochus originally 
named as Patellina scutum von Fritsch, 1878 and Patellina trochus von Fritsch, 1878, are both 
described from Borneo and were assumed to be of Eocene age by von Fritsch [78], but were later 
re-identified as the Tethyan species P. lenticularis and M. parva [72]. While P. lenticularis ranges 
from late Barremian to early Aptian in Tethys, it is only recorded from the Aptian in the Western 
Pacific. 

Sikumbang [79] recorded quoting Rolf Schroeder’s identifications of Meratus Range orbitolinids 
as P. lenticularis and M. parva, indicating an early late Aptian age. In addition to these forms, we 
record in this work for the first time the presence of the late Aptian to early Albian (PZ Aptian 3–
Albian 1) Tethyan species of Palorbitolinoides orbiculatus (Plate 2, c; Plate 3, d, g) in the early Albian 
(PZ Albian 1) of the western flank of the Meratus Mountains, Barito Basin, Southeast Kalimantan, 
Indonesia. The Tethyan genus Conicorbitolina which evolved from Mesorbitolina in Tethys in 
Albian 3 and ranges to Cenomanian 1 (see Fig. 7) is also recorded here for the first time from the 
late Albian (PZ Albian 4) of the Barito Basin, Kalimantan, Conicorbitolina sp. (Plate 3, f). Although 
the shape of the test is similar to the Tethyan Conicorbitolina conica, those from Southeast 
Kalimantan vary in the shape and number of periembryonic chambers (see Plate 3, f). This is an 
example of parallel evolution, which gave rise to a similar but distinct form from that found in the 
Tethyan province. We infer, therefore, that following their initial migration to the Western Pacific, the 
Mesorbitolina lineage subsequently split into parallel lineages evolving at different rates within the 
two provinces, apparently with no further gene flow, suggesting that the provinces again became 
isolated one from another. 

The Praeorbitolina–Mesorbitolina lineages are represented in the Western Pacific province by 
Praeorbitolina cormyi (Plate 2, b), Praeorbitolina wienandsi, Mesorbitolina parva, and M. texana 
(Plate 1, g–h; Plate 3, a–c), and have been recorded from the late Aptian to early Albian (PZ  
Aptian 3–Albian 1), again 5.5 million of years after their first appearance in Tethys. Mesorbitolina 
subconcava (Plate, 1, e; Plate 2, f; Plate 3, e) is recorded here for the first time from the early 
Albian (PZ Albian 1) of the Barito Basin, Southeast Kalimantan, 3.5 million of years after its first 
appearance in Tethys. 

Groups (i-iv) forms seem to be missing from the Western Pacific province, unlike in the Tethys. 
Also, unlike the Tethyan realm, the orbitolinids do not survive the Albian-Cenomanian boundary, but 
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disappeared completely from Japan at the end of PZ Albian 1 [32] and, as shown here, from the 
Barito Basin, Southeast Kalimantan, Indonesia at the end of PZ Albian 4. No orbitolinids are known 
from east of the Wallace Line in East Indonesia and Australia-New Guinea regions [80], as these 
foraminifera required a tropical shallow marine setting, which was not present at this time along the 
North West Australian margin.

The Americas

Tethyan orbitolinids belonging to Groups (ii) and (v) seem to have migrated into the American 
province, however, at a much later date than their first appearance in Tethys. 

The American province, unlike the Western Pacific province, contains representatives of the 
dictyoconines from Group (ii). Paracoskinolina, which first appeared in the Barremian (PZ Barremian 
1) (or in the late Hauterivian if «Paracoskinolina» praereicheli Clavel et al. [81], from the late 
Hauterivian-early Barremian of the Urgonian platform, South East France, Swiss and French Jura, 
Swiss Prealps, is considered as a Parakoskinolina) of Tethys, and Dictyoconus, which first appeared 
in the Aptian (PZ Aptian 1) of Tethys, first appeared in the Albian (PZ Albian 1) of Texas, Mexico, and 
Venezuela (Maync, 1955 76; Arnaud Vanneau and Sliter, 1995), and range to PZ Albian 2. Species 
such as Paracoskinolina sunnilandensis [82] (PZ Albian 2) and Dictyoconus walnutensis (Carsey, 
1926) (PZ Albian 1 -2) are unique and indigenous to the American province, and forms recorded 
as the same as Tethyan species are in fact incorrectly identified. This unique occurrence excludes 
a West to East migration [83], and confirms that for most of the Albian the American and Tethyan 
provinces were ecologically isolated one from another.

The earliest form from Group (v) reported from the American province is P. lenticularis from PZ 
Aptian 1 (125.0Ma) in deposits of south Mexico, appearing 2.0 million years later than its first 
occurrence in the late Barremian of Tethys. The Tethyan Mesorbitolina are also widespread in the 
bank and reef deposits of Texas, New Mexico, Arizona, Guatemala, Honduras and Venezuela (PZ 
Aptian 4 - Albian 2). The cosmopolitan forms, M. texana–M. parva group occurring from PZ Aptian 
3–Albian 1 (119.5-109.8 Ma) in Tethys [31], are only reported from the PZ Aptian 4–Albian 2 (116.5-
109.8 Ma) of Texas, with M. parva only found in the PZ Albian 2 of the Americas.

In the early Albian, species of Mesorbitolina continued to thrive in the Americas but developed 
provincial specific forms, not found in the Tethys or Western Pacific provinces. Thus, the American 
lineage Mesorbitolina minuta– Mesorbitolina gracilis–Mesorbitolina crassa of the PZ Albian 1–2 
[52, 84] indicates that once the orbitolinids were established in the American province in the latest 
Aptian, they evolved independently from, yet in a parallel way to, their Tethyan ancestors, by means 
of gradual development of their embryonic apparatus. Those American species that had been 
previously reported from the Tethys or the Western Pacific were in fact misidentified. For example, 
the American M. minuta was reported by Matsumaru and Furusawa [43], from central Hokkaido, but 
was re-identified as M. texana by Cherchi and Schroeder [85]. 

Discussion
The Early Cretaceous is believed to have been a greenhouse period, with high atmospheric carbon 
dioxide concentrations [86], high global average temperatures with sea surface temperatures 
exceeding 32°C [87, 88], and a stable climate [81]. The earliest Cretaceous (Berriasian–Hauterivian) 
was also characterised by a sustained period of global low sea levels, which were replaced in 
the Barremian by a significant global sea level transgression (see Fig. 6), reaching its maximum 
at around 129 Ma, Barremian 2. This sea level rise flooded low-lying continental regions and so 
created new ecological niches around the globe, one of which was filled in Tethys by the evolving 
orbitolinids.

The globally warm period continued in the mid-Cretaceous and was characterised by an increase 
in the number of agglutinated foraminiferal forms having large alveoles, such as the lituolid 
Pseudocyclammina, or forms with internal radial partitions, such as the orbitolinids (see [1]). 
This may have been an adaptation to the extreme climatic and oceanic conditions (increases 
in temperature and oceanic anoxia; e.g. Kerr [89]) during this interval [67], linked to an inferred 
dramatic increase of CO2 in the atmosphere possibly triggered by enhanced global volcanism (e.g. 
the Ontong Java flood events). The high CO2 levels during this greenhouse period would also have 
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led to increased oceanic acidity [90], which would have favored the ecological domination of the 
Textulariida, exemplified by the orbitolinids with their agglutinated tests, over those forms with 
biogenically precipitated calcitic tests that dominated before and after this period.

Evolving from earlier Valanginian forms, by the late Barremian (PZ Barremian 3), major new lineages 
of the agglutinated orbitolinids had appeared in Tethys (see [83]). These robust forms had the ability 
to survive in many shallow carbonate environments [91], however, they were most common in the 
outer platform ([1, 11, 67, 92]; and see Fig. 12). 

As noted, we have shown that all cosmopolitan orbitolinids appeared in Tethys before 
migrating to other provinces. Likewise, we have seen that once established in the American 
and Western Pacific provinces, local provincial forms evolved, indicating that they were once 
again subsequently isolated from the Tethyan province. In previous studies of Cenozoic LBF, 
specifically the lepidocyclinids [93], the miogypsinids [94], the nummulitoids [95, 96] and the 
orthophragminids [97, 98], we have observed similar developments, with periods of migration 
from one province to another followed by subsequent isolation and development of local 
provincial linages. In these Cenozoic cases, the periods of inter-provincial migration coincided 
with major sea level regressions, while the subsequent provincial isolation coincided with global 
sea level transgressions. As observed in this study, it appears that a similar correlation occurs 
with the Cretaceous orbitolinids, with migrations from Tethys occurring during the time of Aptian 
sea level low stands (Fig. 6), followed by isolation when the sea level again rose in the Albian. 

Thus, in Tethys, P. lenticularis (Plate 2, a; Fig. 10) first occurred in late Barremian (PZ Barremian 3, 
127 Ma), 2 million years before its first appearance in the American and Western Pacific provinces 
(at the beginning of the Aptian, PZ Aptian 1, 125.0 Ma). This migration coincides with the global sea 
level regression that marks the beginning of PZ Aptian 1, and which culminates with the global sea 
level minimum at the end of PZ Aptian 2.

Similarly, the earliest Mesorbitolina (e.g. Mesorbitolina lotzei) appeared first in Tethys, in PZ Aptian 
2, but are not recorded until PZ Aptian 3 in the Western Pacific province, and PZ Aptian 4 in the 
American province. 

After the earliest migration in the Aptian, the American Province appears to have been 
again isolated from Tethys throughout the later Albian and the more advanced lineages of 
Group (v) (e.g. Orbitolina, Conicorbitolina) of the Tethyan provinces, which appeared in the 
late Albian, are not found in the Americas. The evolutionary patterns inferred from Tethyan 
species diverge from those observed in the Americas, confirming that these two provinces 
were isolated from each other at this time. The progressive changes seen in the different 
lineages are regarded here as examples of homoplasy, which resulted in the development of 
morphologically similar yet phylogenetically distinct forms with distinct biostratigraphic and 
paleogeographic characteristics.

The American orbitolinids became extinct at the end of the PZ Albian 2, 12.8 Ma earlier than 
those of Tethys (end Cenomanian 3). This event corresponds to the opening of the Western 
Interior Seaway triggered by sea level rises, and tectonic forces associated with the subduction 
of the Farallon Plate in the late Albian. This produced, for a period, an epicontinental sea over 
western North America that linked the tropical seas with a previously separate Artic Ocean. This 
fully open seaway persisted in the Albian and the Cenomanian, flooding the orbitolinids habitats 
with cooler deeper waters, and was probably the cause of the orbitolinids extinction in the 
American province.

In the Western Pacific province, the late Aptian to early Albian larger benthic foraminifera had 
their origin in Tethys. Following the early Albian migration of the Tethyan foraminifera, however, 
they seem to have become isolated in the South East Asian sub-province, again correlated with 
the early Albian sea level recovery. During the late Albian, the lineages evolved independently 
but in parallel to their Tethyan ancestors. The form Conicorbitolina sp. is similar to but different 
in specific characters from the Tethyan C. conica (d‘Archiac). This suggests that the migration of 
Albian foraminifera to the Western Pacific province was only possible for a limited period around 
the early Albian. Thereafter the orbitolinids of the South East Asian sub-province remained small, 
rare, and isolated from those in Tethys, as the exclusively Tethyan large species of Orbitolina 
never appeared in this sub-province. The orbitolinids do not survive the Albian-Cenomanian 
boundary, but unlike the Tethyan realm, disappeared completely from the Northwest Pacific sub-
province at the end of PZ Albian 1 [32] and, from the South East Asian sub-province at the end of 
PZ Albian 4. 
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Conclusion
Analysis of new material combined with a synthesis of the published literature has allowed the 
understanding of the global evolution and paleobiogeographic distribution of mid-Cretaceous 
orbitolinids within three LBF provinces; namely the Americas, Tethys, and the newly identified 
Western Pacific province. 

We conclude that, unlike previously studied Cenozoic LBF forms, such as the lepidocyclinids [93], 
the miogypsinids [94], the nummulitoids [95] and the orthophragminids [96], which evolved first 
in the Americas and then migrated eastward to Tethys, the Mesozoic orbitolinids originated in the 
warm tropical shallow platforms of Tethys in the Early Cretaceous, Valanginian (PZ Valanginian 1). 
The subsequent paleogeographic migration during the global sea level low stands of the Aptian of 
members from orbitolinid Group (ii) and Group (v) was bidirectional, moving from Tethys westward 
to the Americas, and also eastward into the Western Pacific region. There is no evidence of a West 
to East trans-Atlantic migration, nor of migration of Western Pacific forms to Tethys.

We infer that migration stopped after rising sea level in the Albian. As species became 
geographically isolated, colonising new but ecologically similar habitats, they thrived and evolved 
similar but distinct parallel lineages, taking advantages of empty niches and optimum conditions. 
This example of parallel speciation is discussed by Schluter et al. [99], and probably reflects that 
all species shared a genetic predisposition to develop mutations of a specific, advantageous type, 
inherited from their last common ancestor.

The new understanding of the phylogenetic evolution of the Tethyan, Western Pacific and American 
orbitolinids presented in this paper, when combined with the improved understanding of their 
biostratigraphic ranges and facies relationships, provides the first global-scale understanding of their 
development, and so enhances their usefulness as a tool for the study of Early to mid-Cretaceous 
warm-water carbonate platforms, which are so important in today’s hydrocarbon exploration.
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