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Abstract
Tracking and measuring national carbon footprints is key to achieving the ambitious goals set 
by the Paris Agreement on carbon emissions. According to statistics, more than 10% of global 
transportation carbon emissions result from shipping. However, accurate tracking of the emissions 
of the small boat segment is not well established. Past research looked into the role played by 
small boat fleets in terms of greenhouse gases, but this has relied either on high-level technological 
and operational assumptions or the installation of global navigation satellite system sensors to 
understand how this vessel class behaves. This research is undertaken mainly in relation to fishing 
and recreational boats. With the advent of open-access satellite imagery and its ever-increasing 
resolution, it can support innovative methodologies that could eventually lead to the quantification 
of greenhouse gas emissions. Our work used deep learning algorithms to detect small boats in 
three cities in the Gulf of California in Mexico. The work produced a methodology named BoatNet 
that can detect, measure and classify small boats with leisure boats and fishing boats even under 
low-resolution and blurry satellite images, achieving an accuracy of 93.9% with a precision of 
74.0%. Future work should focus on attributing a boat activity to fuel consumption and operational 
profile to estimate small boat greenhouse gas emissions in any given region.
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Introduction

Energy crisis, energy security and climate change

The Intergovernmental Panel on Climate Change (IPCC) explains, in its latest report, that humans 
and nature are being pushed beyond their abilities to adapt due to the anthropogenic emissions 
caused by economic, industrial and societal activities [1]. Carbon-intensive resources still comprise 
a large proportion of the energy system [1] – about 80% in 2017 [2]. However, the share of 
electricity production from renewables increased from 20.8% to 29.0% between 1985 and 2020 [3]. 
Still, carbon emissions have not been reduced in line with the ambitions of the Paris Agreement, 
and it is predicted that in the next few years, the gains in carbon reduction due to the Covid-19 
pandemic will be erased, faster than expected [4]. However, even under all these pressures and 
projections, it is still possible for humanity to keep the global temperature below 1.5°C from pre-
industrial levels by 2100 if substantial changes are made to the current energy systems.

However, energy security is an important part of the strategies proposed by countries to support 
economic growth and provide essential services to their populations. Currently, nations deposit 
most of their energy security into fossil fuels while expanding their renewable power capacity. Fossil 
fuels and their conversion systems (e.g., internal combustion engines) permit operators to react 
quickly to changes in the energy demand (i.e., more control over energy deployment) while offering 
acceptable volumetric energy densities. However, heavy reliance on fossil fuels, coupled with the 
fuel’s geographical origin, is at the mercy of important price fluctuations due to geopolitical and 
logistical events, such as Russia’s invasion of Ukraine. These can disrupt global energy systems 
and affect the stability of nations and human livelihoods [5,6]. On the other hand, renewable energy 
production and distribution tend to lie within a country’s boundaries. Over the last few years, the 
price of renewable energy has been catching up with those of subsidised fossil fuels – with some 
specific examples already undercutting fossil fuel prices [7]. In fact, from 1987 to 2015, the cost of 
oil and coal rose by approximately 36% and 81%, respectively, and from 1989 to 2015, the cost 
of natural gas rose by approximately 53% [8]. More recently in March 2022, the UK experienced 
increases in natural gas to around £5.40/therm, a rise above 1,100% from the price levels seen 
in 2021 [9]. Nevertheless, it is important to note that renewable energy variability and investment 
requirements are significant challenges to grid stability and energy security.

Shipping sector, small boat fleet and emission inventory

Shipping, the backbone of market globalisation, plays an important role in the carbon reduction of 
human activities as it moves around 90% of all goods around the globe [10]. However, its reliance 
on fossil fuels, coupled with robust economic growth, saw total carbon dioxide (CO2) emissions 
grow from 962 megatonne (Mt) in 2012 to 1056 Mt in 2018, representing more than 10% of the total 
global transportation emissions [11]. Furthermore, if nothing is done in the sector, it is projected 
that by 2050 shipping CO2 emissions could grow to 1500 Mt. In this light, the International Maritime 
Organisation (IMO) produced its ambitions to decarbonise international shipping [12] in 2018. 
However, this vision only covers international navigation composed of large vessels and does not 
consider the small boat fleet – vessels below 100 gross tonnages that tend to measure less than  
24 m in length [13].

There are good reasons for this decision. First, the IMO focuses mainly on ships that navigate 
international waters or large ships performing domestic voyages [14]. These vessels are required 
to have the automatic identification system (AIS) transponders for safe navigation. On the other 
hand, small boats tend not to have an AIS or a global positioning system (GPS) transponder 
[15,16], which makes the study of their movements more challenging. Second, small boats are 
typically registered and monitored by national and regional bodies, and the comprehensiveness 
of data depends on capital and human resources in addition to the infrastructure to maintain the 
registry [17]. Third, small boats are a diverse segment of shipping and usage depends on the 
geographical location, type of activity, construction and operating costs and accessibility to fuel or 
bunkering infrastructure [18]. Similarly, engine providers are extensive, giving a broad range of fuel 
consumption curves and emissions [19–21].

Furthermore, fuel selection is equally diverse: petrol, diesel, petrol mixed with engine oil – mainly for 
two-stroke engines, ethanol and bio-fuels – or a mix of bio-fuel with different fossil fuels. Finally, not 
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all small boats are powered by an internal combustion engine. They can instead be powered by sail, 
battery-electric or paddles [22–24].

Nevertheless, with all these challenges, the small boat fleet can significantly contribute to the 
shipping segment’s emission footprint based on its activity [25,26]. Emissions inventories aid our 
understanding of what measures must be taken to enable governments and industry to start the 
road to full decarbonisation in a just and equitable way [27–29]. Furthermore, creating effective 
policies and regulations based on accurate emissions accounting can incentivise the use of 
energy-efficient technologies, electrification and scalable zero-emission fuels [30,31]. Additionally, 
if countries want to meet their ambitious decarbonisation emissions targets, they cannot afford to 
ignore the role played in greenhouse gas (GHG) emissions by the small boat fleet [32–35].

Although it is possible to estimate emissions from large vessels using AIS data sent from a ship’s 
transponder to be coupled with technical models [11], small vessels depend on the national 
registration system. Their operation is typically assumed or captured by national fuel sales, which 
tend to be highly aggregated (e.g., [36]). Developed economies, such as the UK, tend to have a 
national registry of smaller vessels [37] that provides a sense of their activity level and hence can 
infer CO2 emissions.

However, in developing countries, it tends to be a mixed bag in terms of the level of precision and 
availability. For instance, in Mexico, only fishing vessels are counted in the national registry [38]. 
Still, it is not easy to know where they are located and infer their activities. Overall, Mexico does 
not have a regional CO2 inventory specialised in the small boat fleet; instead, they are aggregated 
as part of the maritime and fluvial navigation [1A3d] class in the national annual emission inventory 
developed by the Instituto Nacional de Ecologá y Cambio Climático (INECC) [39] in a top-down 
approach based on the IPCC Guidelines [40]. Therefore, quantifying and categorising the small 
boat fleet will allow a better precision of where and how the emissions are being emitted and will 
enhance the maritime emission inventories.

Observing shipping activity in the Gulf of California is essential due to its unique geographical 
location, conformation and biophysical environment [41–43]. Furthermore, the Gulf of California, 
includes the largest fishing state (Sonora) in Mexico [44] and the most prominent sports fishing 
destination (Los Cabos, Baja) [45]. Additionally, the region is one of the most protected areas 
in Mexico due to its diversity of flora and fauna; the area includes the upper part of the Gulf of 
California, Bahia Loreto and Bahia de los Angeles [46,47].

Bringing deep learning to small ship detection in satellite imagery

Bringing deep learning, especially convolutional neural networks (CNNs), to the field of satellite 
image recognition is essential. Satellite image recognition is an important technology for various 
fields, such as environmental monitoring, natural resource management and disaster response  
[48–50]. It involves analysing satellite imagery to extract useful information, such as identifying 
objects, patterns and changes in the earth’s surface. Traditional methods for satellite image 
recognition rely on hand-crafted features and rules, which can be time-consuming and error-prone 
[51–53].

Deep learning is a type of artificial intelligence (AI) that has shown great promise in solving complex 
problems in fields such as computer vision and natural language processing. It involves training large 
neural networks on vast amounts of data, which allows them to automatically learn complex patterns 
and relationships [54]. CNNs are a type of deep learning model that is particularly well-suited for 
image recognition tasks. They can learn hierarchical representations of visual data and can handle 
large amounts of data, making them efficient and effective for satellite image recognition [55,56].

Recent advances in satellite image recognition using deep learning have shown promising results. 
For example, researchers have used CNNs to detect objects or patterns in satellite imagery with high 
accuracy, such as roads, buildings and vegetation [57,58]. They have also applied deep learning to 
tasks such as land use classification, land cover mapping and disaster damage assessment [59–61].

In conclusion, bringing deep learning, especially CNNs, to the field of satellite image recognition 
is a large area of opportunity. It allows leveraging the power of AI to automatically learn complex 
patterns and relationships in satellite imagery. This can lead to improved accuracy, efficiency, 
automation and scalability compared to traditional methods, and has the potential to benefit a 
range of fields that rely on satellite imagery data.
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Contributions

The contributions of this study are summarised as follows:

•	 A purpose-built methodology for this work, BoatNet, was developed. This work shows that 
BoatNet detects many small boats in low-resolution, blurry satellite images with considerable 
noise levels. As a result, the precision of training can be up to 93.9%, and detecting small 
boats in the Gulf of California can be up to 74.0%.

•	 This work demonstrated that BoatNet could detect the length of small boats with a precision 
up to 99.0%.

•	 BoatNet has allowed for a better understanding of the small boat activity and physical 
characteristics. Based on this, it has been possible to answer questions about the composition 
of small boats in the Gulf of California. Regarding the authors’ knowledge of the literature, this 
is a first but essential step in constructing a way, based in object recognition, to estimate the 
maritime carbon footprint of the small boat fleet.

Related work

Small boat fleet and carbon emissions

Previous work related to estimating small-scale vessels without machine learning methods includes 
using top-down and bottom-up approaches and the use of statistical assumptions.

Parker et al. [62] used a top-down approach to estimate fishing sector emissions in 2011, which 
reached about 179 Mt carbon dioxide equivalent (CO2e), representing 17.1% of the total large 
fishing ship emissions in that year [63]. However, their work only distinguished between motorised 
and non-motorised fishing vessels. Greer et al. [64] took a bottom-up approach to classify the 
fishing fleet in six different sizes, three below 24 m long. The findings show that the small fishing 
boat fleet in 2016 emitted 47 Mt CO2, about 22.7% of the total fishing fleet. Ferrer et al. [65] used an 
activity-based method using GPS, landing and fuel-used data to estimate the fishing activity around 
the Baja California Peninsula in Mexico. They found that just the small-scale fishing fleet produced 
3.4 Mt of CO2e in 2014. To put this into context, Mexico’s national inventory for the domestic 
shipping sector, but not accounting for fishing activity, in 2014 was recorded at just 2.2 Mt CO2e, 
clearly placing into perspective the role of this fleet segment on national inventories [39].

Several authors have proposed using AIS to monitor the carbon emissions of the fleet [66–70]. 
Johansson et al. [71] proposed a new model Finnish Meteorological Institute - boat emissions and 
activities simulator (FMI-BEAM) to describe leisure boat fleet emissions in the Baltic Sea region 
with over 3000 dock locations, the national small boat registry, AIS data and vessel survey results. 
However, the method cannot cover countries with no national registry for small boats. Besides, 
small boats are not just leisure boats. Ugé et al. [72] estimated global ship emissions with the help 
of data from AIS. They used more than three billion daily AIS data records to create an activity 
database that captured ship size, speed, and meteorological and marine environmental conditions. 
This method is highly dependent on AIS data; however, these transponders are not normally 
installed on board small boats to capture their activity.

Zhang et al. [73] included unidentified vessels in the AIS-based vessel emission inventory. In 
doing so they developed an AIS-instrumented emissions inventory, including both identified and 
unidentified vessels. In particular, missing vessel parameters for unidentified vessels were estimated 
from a classification regression of similar vessel types and sizes in the AIS database. However, the 
authors did not discuss whether the regression model applies to vessels in most coastal areas. 
Nor did they explore regional vessel diversity in the database, so statistical inferences and levels of 
uncertainty about the applicability of their method to other unidentified vessels in a defined single 
region (e.g., small boats in the Gulf of California, Mexico) cannot be made.

Convolutional neural network architecture

Neural networks originate from the human perception of the brain. In 1943, American 
neuroscientists McCulloch and Pitts proposed a theory that every neuron is a multiple-input single-
output structure [74]. Furthermore, there are only two possibilities for this output signal: zero or one, 
which is very similar to a computer.
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In image recognition, a 7 × 7 image, for example, has 49 elements or cells. If ‘X’ is inputted to 
the grid, as shown in Fig. 1a, the computer will interpret it as a series of numbers (e.g., zeros 
and ones) as seen in Fig. 1b. If each cell is either black or white, for example, black can be 
assigned as one while white would be zero, resulting in a 7 × 7 matrix filled with zeros and ones. 
After feeding the algorithm as much data as is available, it will be trained to find parameters to 
determine if the object is an ‘X’ or not. For example, if it is a grey-scale picture, each number 
is neither zero nor one, but rather a grey-scale value from 0 to 255. If it is a colour image, it will 
use the red–green–blue (RGB) colour range. Essentially, no matter what the image is, it can be 
interpreted as a combination number inside a matrix, this eventually working as the input of the 
neural network. The goal of training a neural network is to find the parameters that make the loss 
function – it measures how far an estimated value is from its true value – smallest. However, the 
method described above is time-consuming and computationally expensive to train real-world 
images. Besides, the algorithm will be hard to recognise once the image is dilated, rotated or 
changed.

Based on the Neocognitron Model of Fukushima and Miyake [75], LeCun and Bengio [76] 
invented a practical method for image recognition, called the convolutional neural network. 
The role of convolution is to use a mathematical method to extract critical features from the 
image. This is achieved by extracting the features to use a convolution kernel to carry out the 
convolution operation. The convolution kernel is a matrix, usually 3 × 3 or 5 × 5. For instance, 
if the convolution kernel is 3 × 3, see Fig. 1c, then a convolution operation will be undertaken 
with the 7 × 7 ‘X’ matrix (Fig. 1b) and the kernel (Fig. 1c). The operation result is also known as a 
feature map (Fig. 1d) [77].

The feature map reinforces the features of the convolution kernel. The 3 × 3 convolution kernel 
portrayed in Fig. 1c has only three oblique blocks of pixels that are ones. So if the original 7 × 7  
matrix (Fig. 1b) also has diagonal pixel blocks of ones, the number would be extensive when the 
convolution operation is complete, which means the desired feature has been extracted. The 
smaller the value of the pixel block in the other positions of the feature map (Fig. 1d), the less it 
satisfies the feature. In general, different convolution kernels make it possible to achieve different 
feature maps.

The next step after convolution is pooling. The pooling method can reduce the feature map size 
and maintain similar features to the feature map before the pooling process. Figure 1e shows the 
relatively small feature map after pooling the 5 × 5 matrix (Fig. 1d).

The step after pooling is activation. The activation function decides whether the neuron should 
be activated by computing the weighted sum and further adding the bias. The essence of the 
activation function is to introduce nonlinear factors to solve problems that a linear model cannot 
solve [78]. For example, after activating the sigmoid function, each element in the feature map 
would be between zero and one, as shown in Fig. 1f.

It is worth noting that the initial convolution kernel may be artificially set. Nevertheless, machine 
learning will go backwards to adjust and find the most suitable convolution kernel based on its 
data. As an image generally has many features, there will be many corresponding convolution 
kernels. After many convolutions and poolings, features can be found, including the diagonal 
lines of the image, the contours and the colour features. This information is taken and fed into 
the fully connected network for training, and it is finally possible to determine what the  
image is.

(a) (b) (c) (d) (e) (f)

Figure 1

From left to right: (a) Letter X in a 7 × 
7 image; (b) letter X in a 7 × 7 matrix; 
(c) a 3 × 3 convolution kernel; (d) a 5 × 
5 feature map; (e) a 3 × 3 feature map 
after pooling; (f) a 3 × 3 feature map 
after activating with sigmoid function.
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Convolutional neural networks in image recognition

The above literature review has demonstrated that the past literature on shipping carbon 
inventories has not focused on small boats. Thus, the topic of activity-based emission inventories 
for this segment is an important gap in the literature. There is still considerable work to be done 
to understand how the small boat fleet operates, what fuels are used, and the level of activity. 
However, with the development and maturation of a range of computer vision techniques such 
as CNNs, it may be possible to accurately identify small vessels from open satellite imagery and 
support understanding of this segment of shipping.

One of the computer vision’s most fundamental and challenging problems is target detection. The 
main goal of target detection is to determine the location of an object in an image based on a large 
number of predefined classes. Deep learning techniques, which have emerged in recent years, are 
a powerful method for learning features directly from data and have led to significant breakthroughs 
in the field of target detection. Furthermore, with the rise of self-driving cars and face detection, the 
need for fast and accurate object detection is growing.

In 2012, AlexNet, a deep CNN (DCNN) proposed by Krizhevsky et al. [79], achieved record accuracy 
in image classification at the ImageNet Large-Scale Visual Recognition Challenge (ILSRVC), making 
CNNs the dominant paradigm for image recognition. Next, Girshick et al. [80] introduced Region-
based Convolutional Neural Networks (R-CNN), the first CNN-based object detection method. 
The R-CNN algorithm represents a two-step approach in which a region proposal is generated 
first, and then a CNN is used for recognition and classification. Compared to the traditional sliding 
convolutional window to determine the possible regions of objects, R-CNN uses a selective 
search to pre-extract some candidate regions that are more likely to object in order to avoid 
computationally costly classification and object searches, which makes it faster and significantly 
less computationally expensive [80,81]. Overall, the R-CNN approach is divided into four steps:

1.	 Generate candidate regions.

2.	 Extract features using CNN on the candidate regions.

3.	 Feed the extracted features into a support vector machine (SVM) classifier.

4.	 Correct the object positions by using a regressor.

However, R-CNN also has drawbacks: the selective search method is slow in generating positive 
and negative sample candidate regions for the training network, which affects the overall speed 
of the algorithm; R-CNN needs to perform feature extraction once for each generated candidate 
region separately; there are a large number of repeated operations which limits the algorithm 
performance [82].

Since its inception, R-CNN has undergone several developments and iterations: Fast R-CNN, 
Faster R-CNN and Mask R-CNN [83–85]. The improvement of Fast R-CNN is the design of a 
pooling layer structure for the region of interest (ROI). The pooling stage effectively solves the 
R-CNN operation that crops and scales image regions to the same size, speeding up the algorithm. 
Faster R-CNN replaces the selective search method with the region proposal network (RPN) [84]. 
The selection and judgment of candidate frames are handed over to the RPN for processing, and 
candidate regions are subjected to multi-task loss-based classification and localisation processes.

Several CNN-based object detection frameworks have recently emerged that can run faster, have 
a higher detection accuracy, produce cleaner results and are easier to develop. Compared to the 
Faster R-CNN model, the You Only Look Once (YOLO) model can better detect smaller objects, 
that is, traffic lights at a distance [86], which is important when detecting objects in satellite images. 
Also, the YOLO model has a faster end-to-end run time and detection accuracy than the Faster 
R-CNN [86]. Mask R-CNN upgrades the ROI pooling layer of the Fast R-CNN to an ROI align layer 
and adds a branching FCN layer, the mask layer, to the bounding box recognition for semantic 
mask recognition [85]. Thus, the Mask R-CNN is essentially an instance segmentation algorithm, 
compared to semantic segmentation.1 Instance segmentation is a more fine-grained segmentation 
of similar objects than semantic segmentation.

However, even traditional CNNs can be very useful for large-scale image recognition. For example, 
Simonyan and Zisserman [87] researched the effect of convolutional network depth on its  
accuracy in large-scale image recognition settings. Their research found that even with small  
(3 × 3) convolution filters, significant accuracy is achieved by pushing the depth from 16 to 19 
weight layers.
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In this research, the YOLO framework was selected. It uses a multi-scale detection method, which 
enables it to detect objects at different scales and to adapt to changes in the size and shape of the 
objects being observed [88]. Besides, YOLO is highly effective in detecting small objects with high 
accuracy and precision [89]. This makes it an ideal choice for detecting small objects in satellite 
imagery contexts, such as small boats in coastal waters. Additionally, YOLO is highly scalable, 
making it suitable for use in large-scale applications [90].

Finally, this study intends to develop the first stages of BoatNet. This image recognition model aims 
at detecting small boats, especially leisure and fishing boats in any sea area which, in turn and with 
further development, could significantly reduce uncertainty in the estimation of small boat fleet 
emission inventories in countries where access to tracking infrastructure, costly satellite databases 
and labour-intensive methodologies are important barriers.

Convolutional neural network configurations

Target areas in the Gulf of California and dataset statistical analysis

The Gulf of California in Mexico was chosen as an area of study. Ideally, to analyse a sufficient 
amount of satellite image data, the ports of each of the major harbour cities in the Gulf of California 
would need to be included in the scope of our study. Thus, the first step in this work was to 
determine if there was enough satellite data for the area. In this study, the Gulf of California was 
split into a few zones based on the Mexican state limits: (1) Baja California, (2) Sinaloa, (3) Sonora 
and (4) Baja California Sur. The satellite dataset used in this analysis included 690 high-resolution 
(4800 pixels × 2908 pixels) images of ships collected from Google Earth, where the imagery sources 
are Maxar Techonologies and CNES/Airbus. From the imagery dataset, a statistical analysis was 
performed on how many times, temporally speaking, the satellite database captured the region of 
interest. As a result of this analysis, it was found that:

•	 most cities in the Gulf of California do not have enough open-access satellite data in 2018 and 
2021, while many cities have relatively rich satellite data between 2019 and 2020;

•	 there has been a steady increase in the collection of satellite data in the Gulf of California from 
2018 to 2020;

•	 the open-access and high-quality satellite data from Google Earth Pro is not immediately 
available to the public;

•	 differences in data accessibility are still evident among different cities. For example, Guaymas 
in the state of Sonora has rich satellite images in 2019 and 2020. However, other cities, such 
as La Ventana in the state of Baja California Sur, did not appear on Google Earth Pro between 
2019 and 2020.

For this reason, continuing with the previous strategy of analysing the satellite data for each city in 
the Gulf of California would lead to a relatively large information bias and thus would not achieve 
an effective object detection model. Therefore, the following three cities with the richest data-
accessibility in Google Earth Pro were chosen as the target areas for this study: Santa Rosalia, 
Loreto and Guaymas (see Fig. 2 for their geographical locations). The number of times captured by 
Google Earth Pro [91] is shown in Fig. 3 with a database of 583 images with timestamps between 
2019 and 2020 for the three Mexican coastal cities.

Preprocessing

Each satellite image used for training was manually pre-labelled with a highly precise label box [92]. 
The original dataset contained images larger than 9 MB, which is an efficiency burden for neural 
network training, especially when few objects are detected. For this reason, all images were resized 
from 4800 pixels × 2908 pixels to 416 pixels × 416 pixels, with the file sizes reduced to between 
10 KB and 40 KB [93].

Each satellite image for targeting or testing can be directly extracted from Google Earth Pro. Before 
downloading these images, a few things were done initally. First, all the layers from Google Earth 
Pro needed to be removed. Then, it was necessary to open the ‘Navigation’ tab of the ‘Preferences’ 
menu; ‘Do not automatically tilt while zooming’ needs to be clicked. This allowed the images 
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available to be acquired which were directly above sea level. Finally, the eye altitude was set to 
200 m and the images were saved in 4800 pixels × 2908 pixels.

Single object detection architecture

Figure 4 shows a schematic of the models being used for detecting boats, where satellite images in 
the Gulf of California are the input of a pre-trained CNN. The detection accuracy was determined by 
computing the mean probability score from the Gulf’s satellite images. In the section Convolutional 
neural networks in image recognition, recent literature and the development of CNNs, including the 
YOLO model, were discussed. YOLO version 5 (YOLOv5) has four different categories of models, 
YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x [94]. They have 7.3 million, 21.4 million, 47.0 million 
and 87.7 million parameters, respectively. The performance charts can be seen in Fig. 5, which shows 
that the YOLOv5l model can achieve higher average precision with the same faster computing speed. 
Thus, in this study, Google Colab’s Tesla P100 GPU2 and the YOLOv5 framework were used.

Figure 4

Model architecture. Detection model 
architecture for obtaining a conclusion 
from an input satellite image of boats. 
Images are preprocessed and passed 
through a CNN. The model’s output 
is a score, y ∈ (0,1), representing the 
probability of being detected as a boat.

Figure 2

The geographic locations of the three 
target cities – Santa Rosalia, Loreto, 
and Guaymas. (Source: Google Maps 
2021.)

Figure 3

Number of times the three cities (Santa 
Rosalia, Loreto, Guaymas) were captured 
by Google Earth Pro from 2018 to 2021.
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Satellite images often contain noise such as shadows cast by water on the sea surface or haze 
clouds in the atmosphere, which make the training data inaccurate and often cause problems 
ensuring the model’s correctness. He et al. [95] proposed a simple but effective image prior-dark 
channel before removing haze from a single input image. The prior-dark channel can be used as a 
statistic of outdoor haze-free images. Based on critical observation, most local patches in outdoor 
haze-free images contain some pixels whose intensity is very low in at least one colour channel. 
Using this prior-dark channel before the haze imaging model, the thickness of the haze can be 
estimated, and a high-quality haze-free image can be recovered. Moreover, a high-quality depth 
map can also be obtained as a byproduct of haze removal. In the same way, shadows can be 
removed using the prior-dark channel.

Similar to the principle of using convolution kernels, specific image kernels can sharpen the 
image. While the sharpening kernel does not produce a higher-resolution image, it emphasises the 
differences in adjacent pixel values, making the image appear more vivid. Overall, sharpening an 
image can significantly improve its recognition accuracy with a 5 × 5 image kernel.

Object measurement and classification

Measuring the length of a ship was one of the most challenging topics in this study. As Google 
Earth Pro does not provide an application programming interface (API) for accurate scales, 
manually measuring the size of a particular scale became the core process to calculate the size 
of any given ship. To achieve that it is important that all of the captured satellite images have the 
same eye altitude. By measuring only one real length of the object through the Google Earth Pro 
measurement tool and knowing the pixel length of this object, the length of one pixel in the satellite 
image of the fixed eye altitude can be calculated.

As the dataset for the training model was created with each edge tangent to the edge of the 
detected object, it can roughly treat the boat’s length as the length of the diagonal within the 
detection box. Second, as the scale is central to the detection of the small boat fleet, the imagery 
scale should adhere to the following rules:

•	 Cannot be too large. The image should contain the full area in which boats may be found.

•	 Cannot be too small. If this is not followed it is highly probable that the group of boats are 
detected as a single but larger boat.

•	 Be sufficiently clear. This characteristic allows the algorithm to quantify the boat’s length and 
accurately classify the measurements.

The eye altitude was set to 200 m based on the above rules. This study used a satellite image of 
Zurich Lake, Switzerland, on 16 August 2018 as the standard image for defining the scale (Fig. 6). 

Figure 5

Average Precision (AP) versus GPU 
Speed in the 6th generation of YOLOv5 
model under COCO data set [86,94]. 
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Compared with other regions, the satellite image of Zurich Lake complies with the rules, and it is a 
suitable candidate as the standard for measuring the length of small boats. This standard was then 
used for the rest of the imagery database.

A length measurement comparison was made between the BoatNet framework and Google Earth 
Pro to validate the length method. The vessel in Fig. 6 had a YOLO length of 0.43 that, after the 
scale conversion, represented 55.17 m. With an eye altitude of 200 m, the ratio of the absolute 
length to the YOLO length was approximately 127. Finally, after several verification tests, this ratio 
returned a small margin of error (around 1–3%) and hence was deemed a suitable scaling ratio 
for the remaining images. Moreover, having the same ratio and eye altitude was not enough. The 
resolution of each image must be the same, so measurements are standardised. For this purpose, 
all datasets that detect small boats will maintain a resolution of 3840 × 2160 pixels.

In a certain sense, large vessels (e.g., cargo ships) and small vessels (e.g., small boats for domestic 
use) are distinguished when creating the dataset for the area of interest. However, due to the 
scaling, some large vessels such as general cargo ships do not appear fully in an image. Hence 
they are not considered in the statistical results of this work. On the other hand, some of the larger 
vessels, slightly shorter in length than the 200 m eagle eye scale, are identified correctly by the 
algorithm and counted as part of the number of large vessels in the area. A Python script was then 
designed to count the number of small and large boats between regions.

After distinguishing between large and small boats, it is necessary to distinguish between small 
recreational boats for domestic use and fishing boats. The model used the detected deck colour of 
the small boat to distinguish between them. If the deck was predominantly white, it was assigned 
as a recreational boat, while any other mix of colour would be designated as a fishing boat. It is 
recognised that this is a broad and simplistic classification method, but it is an effective one to test 
the categorisation power of the model. Each of the detected boats (i.e., the objects within the four 
coordinate anchor box) were analysed whether the colour was white or mainly white to assign it to 
each category. As a final step, the model performed the category counting for each image, where a 
Python script was designed to count the small white boats.

Results

Train custom data: weights, biases logging, local logging

As shown in Fig. 7, the average accuracy, precision and recall of the model all show a significant 
increase with the model training number when the intersection over union (IOU)3 is between 50% 

Figure 6

An image from Google Earth Pro for 
Zurich Lake on 16 August 2018 when 
eye alt is 200 m. (Source: Google Earth 
Pro, 2021.)
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and 95%. In particular, the precision of the model can eventually reach a level close to 96%. 
However, this does not necessarily mean that the model will also fit the satellite imagery of the 
Gulf of California. First, such high-accuracy results only tell us that the model can achieve a 
relatively high recognition accuracy, which gradually increases and reaches 96% after 300 training 
repetitions. In the case that the algorithm needs to be trained for this area, consideration must be 
given to purposefully selecting many small boats in or near the area as a data source for training the 
model.

To train models faster, the images’ resolution was reduced by about 70 times, resulting in images 
of 416 pixels × 416 pixels. The training could otherwise take two weeks if the images used had a 
resolution of 4800 pixels × 2908 pixels.

Similarly, as shown in Fig. 8, the loss rate of the box can eventually reach 1% as the  
number of training sessions increases. As this study has defined only one class of object 
(i.e., boat), the probability that the detection box does not detect that it is a boat at all is 1%. 
Similarly, because there is only one class, the class loss rate is zero. Figure 9 presents the 
prediction results during the training of the model, and shows that the model can detect the 
presence of vessels in 100% of the tested ranges and gives the corresponding range boxes. 
Most detected boats have a 90% probability of being boats, an acceptable value for object 
detection. As only one class was set, some were also considered a 100% probability of being 
boats.

Detection results and small boat composition

Starting with the length measurement comparison of a detected small boat and a large ship by 
BoatNet against Google Earth Pro measuring tools, Fig. 10 shows that the small boat detected 

a b

c d

Figure 7

Average model precision when IOU 
is larger than 0.50; average model 
precision when IOU is between 0.50 
and 0.95; The model precision; The 
model recall rate.
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measured 6.98 m using Google Earth Pro, while BoatNet estimated 6.74 m. The error between them 
is 3.4%. Google Earth Pro measured the larger ship at 41.38 m and BoatNet at 40.98 m. The error 
between them is less than 1.0%.

As explained in the section Single object dectection architecture, it was unproductive for the model 
to select the entire region for the study due to the varying amount of publicly available regional 
images from Google Earth Pro over the past three years. Ultimately, the satellite image database 
was built from 690 images. However, as stated in that section, some of the slightly earlier satellite 
images offered inferior detail representation capabilities, which resulted in the model not accurately 
detecting the target’s features. To improve model accuracy, an image enhancement process using a 
5 × 5 sharpening kernel allowed for a higher recognition rate. However, the following situations still 
occur:

1.	 Figure 11: When the detailed representation of the image is indigent, that is, the images are 
blurred, and two or three small boats are moored together, the model is very likely to recognise 
the boats as a whole. There are two reasons for this problem. First, the training data is primarily 
a ‘fuzzy’ data source. Thus, when two or three small boats are moored together, the model 
cannot easily detect the features of each small boat individually. In contrast, it may seem more 
reasonable to the model that the boats as a whole have the same features. The second reason 
is that most data sources are individual boats on the surface or boats docked close to each 
other. As the data sources do not fully consider the fuzzy nature of the detail needed to detect 
the object and the fact that they are too close together, the model naturally does not recognise 
such cases.

2.	 Figure 12: When a large cargo ship is moored, the ship appears as a ‘rectangle’ from the air, 
much like a long pier, and is sometimes undetectable because small vessels with a rectangular 
shape were not common at the time the data feed was compiled. This also applies to 
uncommon vessels such as battleships. This could be corrected if the model considered larger 
ships, but this was outside the scope of this work.

3.	 Figure 13: The recognition rate was also significantly lower when the boats sometimes lay on 
the beach rather than floating on the water. This is because most of the training data are based 
on images in the water rather than boats on the beach.

Nevertheless, as Figs 11–13 demonstrate, the model still detects most small boats in poorly 
detailed satellite images, even those that the human eye cannot easily detect. The number of small 
and large ships between regions can be seen in Figs 14 and 15. Two different types of port cities 
are exemplified by Guaymas, Loreto and Santa Rosalia:

1.	 Santa Rosalia and Loreto have a much smaller number of small boats and almost no large 
ships.

2.	 The port of Guaymas presented a larger number of small boats when contrasted to the other 
two coastal cities. There were between 1.37 and 8.00 times more small boats detected in 
Guaymas than in Santa Rosalia (dependent on the month and year of the image) and 3.00 
times more than in Loreto.

3.	 Guaymas also had a larger number of large ships. There were more than 10 times more large 
ships detected in Guaymas than in Santa Rosalia and Loreto.

4.	 In the relatively large seaports of Guaymas and Loreto, there is a tendency for both large and 
small vessels to decrease with time.

a b c

Figure 8

The box loss rate of the model; the 
class loss rate of the model; the object 
loss rate of the model.

https://doi.org/10.14324/111.444/ucloe.000058


13 / 20	 BoatNet: automated small boat composition detection using deep learning on satellite imagery	 UCL OPEN ENVIRONMENT 

	 https://doi.org/10.14324/111.444/ucloe.000058	

BoatNet: automated small boat composition detection using deep learning on satellite imagery

In fact, according to statistics [96] from the Mexican government, in 2020, the populations of 
Guaymas, Loreto and Santa Rosalia were 156,863, 18,052 and 14,357, respectively. Therefore, 
the results infer that the number of detected boats is correlated to the number of habitats, which 
makes sense as, by probability, there would be more economical and leisure activities around larger 
coastal cities.

Leisure and fishing boats in the Gulf of California

According to the statement in the section Single object dectection architecture, determining 
whether a boat is white can be used as a criterion to determine whether a boat is used for 
recreation or fishing. As seen in Table 1, most of the small boats captured in the photo of Guaymas 
in 2020 are white (i.e., all can be classified as recreational boats). However, as previously discussed, 
this conclusion is limited as the algorithm does not consider, for example, other colours as part of 
the characteristics of leisure boats. Furthermore, although there are many uncertainties in detecting 
the colour of the boats, the algorithm also considers situations where the colour is not fully white 
due to atmospheric refraction, weather conditions or cloud interference. The algorithm also 
considers cases where the boat’s colour is light. Therefore, this approach is acceptable from the 
point of view of algorithm complexity, results and detecting data quality.

Figure 9

Test result of a trained model for 
detecting ships. (Source: Author-
originated, based on Google Earth Pro 
imagery, 2021).
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Discussion
This study demonstrated the capabilities of a deep learning approach for the automatic detection 
and identification of small boats in the waters surrounding three cities in the Gulf of California with a 
precision of up to 74.0%. This work used CNNs to identify types of small vessels. Specifically, this 
study presented an image detection model, BoatNet, capable of distinguishing small boats in the 
Gulf of California with an accuracy of up to 93.9%, which is an encouraging result considering the 
high variability of the input images.

Even with the model’s level of performance using large and highly ambiguous training images, it 
was found that image sharpening improved model accuracy. This implies that access to better 
quality imagery, such as that available through paid-for services, should considerably improve 
model precision and training times.

The results of this research have several important implications. First, the study used satellite 
data to predict the number and types of ships in three important cities in the Gulf of California. 
The resulting analysis can contribute to the region’s shipping fleet composition, level of activity 

Figure 10

Comparing the length of boats using 
Google Earth ruler and computer vision 
algorithm. This example shows the 
image from Google Earth Pro for Zurich 
Lake on 16 August 2018 when the 
eye alt was 200 m. (Source: Author-
originated, based on Google Earth Pro 
imagery, 2021).

Figure 11

When small boats are moored closely 
together in the harbour, the model may 
recognise two small boats as one. The 
image is from Guaymas, January 2020. 
(Source: Author-originated, based on 
Google Earth Pro imagery, 2021).
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Figure 12

When the cargo ship is full of cargo, the 
ship looks like a rectangular jetty from 
above and loses the normal shape of 
a ship. The image is from Guaymas, 
January 2020. (Source: Author-
originated, based on Google Earth Pro 
imagery, 2021).

Figure 13

Models may have difficulty detecting 
small boats moored on the beach. The 
image is from Santa Rosalia, February 
2021. (Source: Author-originated, based 
on Google Earth Pro imagery, 2021).

and ultimately their carbon inventory by adding the emissions produced by the small boat 
fleet. Furthermore, through this approach, it is also possible to assign emissions into regions 
supporting the development of policies that can mitigate local GHG and air pollution. In addition, 
the transfer learning algorithm can be pre-trained in advance and immediately applied to any 
sea area worldwide. This will provide a potential method to increase efficiency for scientists 
and engineers worldwide who need to estimate local maritime emissions. In addition, the model 
can quickly and accurately identify the boat’s length and classify them, allowing researchers to 
allocate more time to the vessels they need concentrate on, not just small boats. Finally, all of 
the above benefits can be exploited in under served areas with a shortage of infrastructure and 
resources.

This work is the first step to building emission inventories through image recognition, and it 
has some limitations. The study considered the ship as a single detection object. It did not 
evaluate whether the model can improve the accuracy of identifying ships in the case of multiple 
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Figure 14

The seasonal daily average count of 
small boats in Santa Rosalia, Loreto 
and Guaymas between 2019 and 2020. 

Figure 15

The seasonal daily average count of 
large ships in Santa Rosalia, Loreto and 
Guaymas between 2019 and 2020. 

Table 1. Detection example. Small boats, large ships and small white boats in Guaymas in 2020

  Mar 20  Jun 20  Sep 20  Dec 20

Small boats   323  283  215  187

Large ships   46  38  50  43

Small white boats  302  273  210  174

Shipping boats   21  10  5  13

detection objects. For instance, BoatNet was not trained to detect docks to improve the metrics 
of detecting boats. By down-sampling the image to 416 pixels × 416 pixels, it is possible to mask 
some of the boats at the edges of the photograph. Furthermore, deep learning models train faster 
on small images [97]. A larger input image requires the neural network to learn from four times as 
many pixels, increasing the architecture’s training time. In this work, a considerable proportion 
of the images in the dataset were large images of 4800 pixels × 2908 pixels. Thus, BoatNet was 
set to learn from resized small images measuring 416 pixels × 416 pixels. Due to the low data 
quality of the selected regions, the images are less suitable as training datasets. However, using 
datasets from other regions or higher-quality open-source imagery may result in inaccurate 
coverage of all types of ships in the region. When focusing on the small boat categorisation and 
the data used, understanding the implications of different environments (e.g., water or land) on 
object classification accuracy through the AI fairness principle deserves further study. From this 
point of view, large-scale collection of data sources in the real physical world would be costly and 
time-consuming. That said, it is possible that reinforcement learning, or building simulations in 
the virtual world, could reduce the negative impact of the environment on object recognition and 
thus improve its categorisation precision. Of all these limitations, model detection still achieves 
excellent performance in detecting and classifying small boats. To enrich the analysis, one of 
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the future works planned is comparing research results with different algorithms for the same 
problem.

It is important to remember that BoatNet currently only detects and classifies certain types of small 
boats. Therefore, to estimate fuel consumption and emissions, it is necessary to couple it with small 
boat behaviour datasets [65], typical machinery, fuel characteristics and emission factors unique to 
this maritime segment [39].

Finally, this work has demonstrated that deep learning models have the potential to identify small 
boats in extreme environments at performance levels that provide practical value. With further 
analysis and small boat data sources, these methods may eventually allow for the rapid assessment 
of shipping carbon inventories.

Notes
1  In computer vision, image segmentation is the process of partitioning an image into multiple image segments, also known as 
image regions or image objects.

2  Colab Pro limits RAM to 32 GB while Pro+ limits RAM to 52 GB. Colab Pro and Pro+ limit sessions to 24 hours.

3  IOU is an evaluation metric used to measure the accuracy of an object detector on a particular dataset.
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