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Abstract—Tracking and measuring national carbon footprints
is one of the keys to achieving the ambitious goals set by
countries. According to statistics, more than 10% of global
transportation carbon emissions result from shipping. However,
accurate tracking of the emissions of the small boat segment is
not well established. Past research has begun to look into the
role played by small boat fleets in terms of Greenhouse Gases
(GHG), but this either relies on high-level technological and
operational assumptions or the installation of Global navigation
satellite system (GNSS) sensors to understand how this vessel
class behaves. This research is undertaken mainly in relation
to fishing and recreational boats. With the advent of open-
access satellite imagery and its ever-increasing resolution, it
can support innovative methodologies that could eventually lead
to the quantification of GHG emissions. This work used deep
learning algorithms to detect small boats in three cities in the
Gulf of California in Mexico. The work produced a methodology
named BoatNet that can detect, measure and classify small boats
with leisure boats and fishing boats even under low-resolution
and blurry satellite images, achieving an accuracy of 93.9% with
a precision of 74.0%. Future work should focus on attributing
a boat activity to fuel consumption and operational profile to
estimate small boat GHG emissions in any given region. The
data curated and produced in this study is freely available at
https://github.com/theiresearch/BoatNet.

Index Terms—Object Detection, Deep Learning, Machine
Learning, Transfer Learning, Small Boats Activity, Climate
Change.

I. INTRODUCTION

A. Energy Crisis, Energy Security and Climate Change

The Intergovernmental Panel on Climate Change (IPCC)
explains, in its latest report, that humans and nature are being
pushed beyond their abilities to adapt due to the anthropogenic
emissions caused by economic, industrial and societal activi-
ties [1]. Nowadays, carbon-intensive resources still comprise
a large proportion of the energy system [1] – about 80% in
2017 [2]. However, the share of electricity production from
renewables increased from 20.8% to 29.0% between 1985
and 2020 [3]. Still, carbon emissions have not been reduced
in line with the ambitions of the Paris Agreement, and it
is predicted that in the next few years, the gains in carbon
reduction due to the COVID-19 pandemic will be erased, faster
than expected [4]. However, even under all these pressures and
projections, it is still possible for humanity to keep the global
temperature below 1.5°C from pre-industrial levels by 2100 if
substantial changes are made to the current energy systems.

However, energy security is an important part of the
strategies proposed by countries to support economic growth
and provide essential services to their populations. Currently,
nations deposit most of their energy security into fossil fu-
els while expanding their renewable power capacity. Fossil
fuels and their conversion systems (e.g. internal combustion
engines) permit operators to react quickly to changes in the
energy demand (i.e. more control over energy deployment)
while offering acceptable volumetric energy densities. How-
ever, heavy reliance on fossil fuels, coupled with the fuel’s
geographical origin, is at the mercy of important price fluctua-
tions due to geopolitical and logistical events, such as Russia’s
invasion of Ukraine. These can disrupt global energy systems
and affect stability of nations and human livelihoods [5],
[6]. On the other hand, renewable energy production and
distribution tend to lie within the country’s boundaries. During
the last few years, its price has been catching up with those of
subsidised fossil fuels – with some specific examples already
undercutting fossil fuel prices [7]. In fact, from 1987 to 2015,
the cost of oil and coal rose by approximately 36% and
81%, respectively and from 1989 to 2015, natural gas rose by
approximately 53% [8]. More recently in March 2022, the UK
experienced increases in natural gas to around £5.40/therm, a
rise above 1,100% from the price levels seen in 2021 [9].
Still, it is important to note that renewable energy variability
and investment requirements are significant challenges to grid
stability and energy security.

B. Shipping Sector, Small Boat Fleet and Emission Inventory
Shipping, the backbone of market globalisation, plays an

important role in the carbon reduction of human activities
since it moves around 90% of all goods around the globe [10].
However, its reliance on fossil fuels, coupled with robust
economic growth, saw total CO2 emissions grow from 962
Megaton (Mt) in 2012 to 1,056 Mt in 2018, representing more
than 10% of the total global transportation emissions [11].
Further, if nothing is done in the sector, it was projected that by
2050 shipping CO2 emissions could grow to 1,500 Mt. In this
light, the International Maritime Organisation (IMO) produced
its ambitions to decarbonise international shipping [12] in
2018. However, this vision only covers international navigation
composed of large vessels and does not consider the small boat
fleet – vessels below 100 gross tonnages that tend to measure
less than 24m in length [13].
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There are good reasons for this decision. First, the IMO
focuses mainly on ships that navigate international waters or
large ships performing domestic voyages [14]. These vessels
are required to have the Automatic Identification System (AIS)
transponders for safe navigation. On the other hand, small
boats tend not to have an AIS or GPS transponders [15] [16],
which makes the study of their movements more challenging.
Second, small boats are typically registered and monitored by
national and regional bodies, and the comprehensiveness of
data depends on capital and human resources in addition to
the infrastructure to maintain the registry [17]. Third, small
boats are a diverse segment of shipping and usage depends
on the geographical location, type of activity, construction
and operating costs, and accessibility to fuel or bunkering
infrastructure [18]. Similarly, engine providers are extensive,
giving a broad range of fuel consumption curves and emissions
[19]–[21].

Furthermore, fuel selection is equally diverse: petrol, diesel,
petrol mixed with engine oil – mainly for two-stroke engines,
ethanol and bio-fuels – or a mix of bio-fuel with different
fossil fuels. Finally, on this matter, not all small boats are
powered by an internal combustion engine. They can instead
be powered by sail, battery-electric or paddles [22]–[24].

Nevertheless, under all these challenges, the small boat
fleet can significantly contribute to the shipping segment’s
emission footprint based on its activity [25] [26]. Emissions
inventories aid our understanding of what measures must be
taken to enable governments and the industry to start the
road to full decarbonisation in a just and equitable way [27]–
[29]. Further, creating effective policies and regulations based
on accurate emissions accounting can incentivise the use of
energy-efficient technologies, electrification and scalable zero-
emission fuels [30] [31]. Additionally, if countries want to
meet their ambitious decarbonisation emissions targets, they
cannot afford to ignore the role played in GHG emissions by
the small boat fleet [32]–[35].

Although it is possible to estimate emissions from large
vessels using AIS data sent from the ship’s transponder to be
coupled with technical models [11], small vessels depend on
the national registration system. Their operation is typically
assumed or captured by national fuel sales, which tend to be
highly aggregated (e.g. [36]). Developed economies such as
the UK tend to have a national registry of smaller vessels [37]
that provides a sense of their activity level and hence can infer
CO2 emissions.

However, in developing countries, it tends to be a mixed
bag in terms of the level of precision and availability. For
instance, in Mexico, only fishing vessels are counted in the
national registry [38]. Still, it is not easy to know where they
are located and infer their activities. In all, Mexico does not
have a regional CO2 inventory specialised in the small boat
fleet; instead, they are aggregated as part of the maritime and
fluvial navigation [1A3d] class in the national annual emission
inventory developed by the Instituto Nacional de Ecologı́a
y Cambio Climático (INECC) [39] in a top-down approach
based on the IPCC Guidelines [40]. Therefore, quantifying and
categorising the small boat fleet will allow a better precision
of where and how the emissions are being emitted and will

enhance the maritime emission inventories.
Observing shipping activity in the Gulf of California is es-

sential due to its unique geographical location, conformation,
and biophysical environment [41]–[43]. Furthermore, in the
Gulf of California, there is the largest fishing state (Sonora) in
Mexico [44] and the most prominent sports fishing destination
(Los Cabos, Baja) [45]. Additionally, the region is one of the
most protected areas in Mexico due to its diversity of flora
and fauna; the area includes the upper part of the Gulf of
California, Bahia Loreto and Bahia de los Angeles [46] [47].

C. Bringing Deep Learning to Small Ship Detection in Satel-
lite Imagery

Bringing deep learning, especially convolutional neural net-
works (CNNs), to the field of satellite image recognition is
essential. Satellite image recognition is an important tech-
nology for various fields, such as environmental monitoring,
natural resource management, and disaster response [48] [49]
[50]. It involves analyzing satellite imagery to extract useful
information, such as identifying objects, patterns, and changes
in the earth’s surface. Traditional methods for satellite image
recognition rely on hand-crafted features and rules, which can
be time-consuming and error-prone [51]–[53].

Deep learning is a type of artificial intelligence that has
shown great promise in solving complex problems in fields
such as computer vision and natural language processing. It in-
volves training large neural networks on vast amounts of data,
which allows them to automatically learn complex patterns
and relationships [54]. Convolutional neural networks (CNNs)
are a type of deep learning model that is particularly well-
suited for image recognition tasks. They can learn hierarchical
representations of visual data and can handle large amounts
of data, making them efficient and effective for satellite image
recognition [55] [56].

Recent advances in satellite image recognition using deep
learning have shown promising results. For example, re-
searchers have used CNNs to detect objects or patterns in
satellite imagery with high accuracy, such as roads, buildings,
and vegetation [57] [58]. They have also applied deep learning
to tasks such as land use classification, land cover mapping,
and disaster damage assessment [59]–[61].

In conclusion, bringing deep learning, especially CNNs,
to the field of satellite image recognition is a large area
of opportunity. It allows to leverage the power of artificial
intelligence to automatically learn complex patterns and re-
lationships in satellite imagery. This can lead to improved
accuracy, efficiency, automation, and scalability compared to
traditional methods, and has the potential to benefit a range of
fields that rely on satellite imagery data.

D. Contributions

The contributions of this study are summarised as follows:
• A purpose-built methodology for this work, BoatNet, was

developed. This work shows that BoatNet detects many
small boats in low resolution, blurry satellite images with
considerable noise levels. As a result, the precision of



3

training can be up to 93.9%, and detecting small boats in
the Gulf of California can be up to 74.0%.

• This work demonstrated that BoatNet could detect the
length of small boats with a precision up to 99.0%.

• BoatNet has allowed for a better understanding of the
small boat activity and physical characteristics. Based
on this, it has been possible to answer questions about
the composition of small boats in the Gulf of California.
Regarding the authors’ knowledge of the literature, this
is a first but essential step in constructing a way based
in object recognition to estimate the maritime carbon
footprint of the small boat fleet.

II. RELATED WORK

A. Small Boat Fleet and Carbon Emissions

Previous work related to estimating small-scale vessels
without machine learning methods includes using top-down
and bottom-up approaches and the use of statistical assump-
tions.

Parker et al. [62] used a top-down approach to estimate
fishing sector emissions in 2011, which reached about 179 Mt
carbon dioxide equivalent (CO2e), representing 17.1% of the
total large fishing ship emissions in that year [63]. However,
their work only distinguished between motorised and non-
motorised fishing vessels. Greer et al. [64] took a bottom-
up approach to classify the fishing fleet in six different sizes,
three below 24 metres long. The findings show that the small
fishing boat fleet in 2016 emitted 47 Mt CO2 about 22.7% of
the total fishing fleet. Ferrer et al. [65] used an activity-based
method using GPS, landing and fuel-used data to estimate the
fishing activity around Baja California Peninsula in Mexico.
They found that just the small-scale fishing fleet produced 3.4
Mt of CO2e in 2014. To put this into context, Mexico’s national
inventory for the domestic shipping sector, but not accounting
for fishing activity, in 2014 was recorded at just 2.2 Mt CO2e,
clearly placing into perspective the role of this fleet segment
on national inventories [39].

Several authors have proposed using AIS to monitor the
carbon emissions of the fleet [66]–[70]. Johansson et al. [71]
proposed a new model (FMI-BEAM) to describe leisure boat
fleet emissions in the Baltic Sea region with over 3,000 dock
locations, the national small boat registry, AIS data and vessel
survey results. However, the method cannot cover countries
with no national registry for small boats. Besides, small boats
are not just leisure boats. Ugé et al. [72] estimated global ship
emissions with the help of data from AIS. They used more
than three billion daily AIS data records to create an activity
database that captured ship size, speed, and meteorological
and marine environmental conditions. This method is highly
dependent on AIS data, however, which their transponders are
not normally installed on board small boat to capture their
activity.

Zhang et al. [73] included unidentified vessels in the AIS-
based vessel emission inventory. In doing so they developed
an AIS-instrumented emissions inventory, including both iden-
tified and unidentified vessels. In particular, missing vessel
parameters for unidentified vessels were estimated from a

classification regression of similar vessel types and sizes in the
AIS database. However, the authors did not discuss whether
the regression model applies to vessels in most coastal areas.
Nor did they explore regional vessel diversity in the database,
so statistical inferences and levels of uncertainty about the
applicability of their method to other unidentified vessels in a
defined single region (e.g. small boats in the Gulf of California,
Mexico) cannot be made.

B. Convolutional Neural Network Architecture
Neural networks originate from the human perception of

the brain. In 1943, American neuroscientists McCulloch and
Pitts proposed a theory that every neuron is a multiple-input
single-output structure [74]. Furthermore, there are only two
possibilities for this output signal: zero or one, which is very
similar to a computer.

In image recognition, a 7x7 image, for example, has 49
elements or cells. If ‘X’ is inputted to the grid, as shown in
Figure 1a, the computer will interpret it as a series of numbers
(e.g. zeros and ones) as seen in Figure 1b. If each cell is
either black or white, for example, black can be assigned as
one while white would be zero, resulting in a 7x7 matrix filled
with zeros and ones. After feeding the algorithm as much data
as available, it will be trained to find parameters to determine
if the object is an ‘X’ or not. For example, if it is a grey-
scale picture, each number is neither zero nor one, but rather
a grey-scale value from 0 to 255. If it is a colour image, it will
use the Red-Green-Blue (RGB) colour range. Essentially, no
matter what the image is, it can be interpreted as a combination
number inside a matrix, this eventually working as the input of
the neural network. The goal of training a neural network is to
find the parameters that make the loss function - it measures
how far an estimated value is from its true value - smallest.
However, the method described above is time-consuming and
computationally expensive to train real-world images. Besides,
the algorithm will be hard to recognise once the image is
dilated, rotated or changed.

Based on the Neocognitron Model of Fukushima [75],
LeCun [76] invented a practical method for image recognition,
called the convolutional neural network. The role of convolu-
tion is to use a mathematical method to extract critical features
from the image. This is achieved by extracting the features to
use a convolution kernel to carry out the convolution operation.
The convolution kernel is a matrix, usually 3x3 or 5x5. For
instance, if the convolution kernel is 3x3, see Figure 1c, then
a convolution operation will be undertaken with the 7x7 ”X”
matrix (Figure 1b) and the kernel (Figure 1c). The operation
result is also known as a feature map (Figure 1d) [77].

The feature map reinforces the features of the convolution
kernel. The 3x3 convolution kernel portrayed in Figure 1c)
only has three oblique blocks of pixels that are ones. So if the
original 7x7 matrix (Figure 1b) also has diagonal pixel blocks
of ones, the number would be extensive when the convolution
operation is complete, which means the desired feature has
been extracted. The smaller the value of the pixel block in
the other positions of the feature map (Figure 1d), the less it
satisfies the feature. In general, different convolution kernels
make it possible to achieve different feature maps.
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Fig. 1. From left to right: (a) Letter X in a 7x7 image; (b) Letter X in a 7x7 matrix; (c) A 3x3 convolution kernel; (d) A 5x5 feature map; (e) A 3x3 feature
map after pooling; (f) A 3x3 feature map after activating with sigmoid function.

The next step after convolution is pooling. The pooling
method can reduce the feature map size and maintain sim-
ilar features to the feature map before the pooling process.
Figure 1e shows the relatively small feature map after pooling
the 5x5 matrix (Figure 1d).

The step after pooling is activation. The activation function
decides whether the neuron should be activated by computing
the weighted sum and further adding the bias. The essence
of the activation function is to introduce nonlinear factors to
solve problems that a linear model cannot solve [78]. For
example, after activating the sigmoid function, each element
in the feature map would be between 0 and 1, as shown in
Figure 1f.

It is worth noting that the initial convolution kernel may
be artificially set. Nevertheless, machine learning will go
backwards to adjust and find the most suitable convolution
kernel based on its data. Since an image generally has many
features, there will be many corresponding convolution ker-
nels. After many convolutions and poolings, features can be
found, including the diagonal lines of the image, the contours,
and the colour features. This information is taken and fed
into the fully connected network for training, and it is finally
possible to determine what the image is.

C. Convolutional Neural Networks in Image Recognition

The above literature review has demonstrated that past liter-
ature on shipping carbon inventories has not focused on small
boats. Thus the topic of activity-based emission inventories
for this segment is an important gap in the literature. There
is still considerable work to be done to understand how the
small boat fleet operates, what fuels are used, and the level
of activity. However, with the development and maturation of
a range of computer vision techniques such as convolutional
neural networks (CNNs), it may be possible to accurately
identify small vessels from open satellite imagery and support
understanding of this ship segment.

One of the computer vision’s most fundamental and chal-
lenging problems is target detection. The main goal of target
detection is to determine the location of an object in an
image based on a large number of predefined classes. Deep
learning techniques, which have emerged in recent years, are
a powerful method for learning features directly from data

and have led to significant breakthroughs in the field of target
detection. Furthermore, with the rise of self-driving cars and
face detection, the need for fast and accurate object detection
is growing.

In 2012, AlexNet, a deep convolutional neural network
(DCNN) proposed by Krizhevsky et al. [79], achieved record
accuracy in image classification at the ImageNet Large-Scale
Visual Recognition Challenge (ILSRVC), making convolu-
tional neural networks the dominant paradigm for image
recognition. Next, Girshick et al. [80] introduced Region-
Based Convolutional Neural Networks (R-CNN), the first
convolutional neural network (CNN)-based object detection
method. The R-CNN algorithm represents a two-step approach
in which a region proposal is generated first, and then a
CNN is used for recognition and classification. Compared to
the traditional sliding convolutional window to determine the
possible regions of objects, R-CNN uses selective search to
pre-extract some candidate regions that are more likely to
object in order to avoid computationally costly classification
and object searches, which makes it faster and significantly
less computationally expensive [81] [80]. Overall, the R-CNN
approach is divided into four steps:

• Generate candidate regions.
• Extract features using CNN on the candidate regions.
• Feed the extracted features into a Support Vector Machine

(SVM) classifier.
• Correct the object positions by using a regressor.

However, R-CNN also has drawbacks: the selective search
method is slow in generating positive and negative sample
candidate regions for the training network, which affects the
overall speed of the algorithm; R-CNN needs to perform
feature extraction once for each generated candidate region
separately; there are a large number of repeated operations
which limits the algorithm performance [82].

Since its inception, R-CNN has undergone several de-
velopments and iterations: Fast R-CNN, Faster R-CNN and
Mask R-CNN [83]–[85]. The improvement of Fast R-CNN
is the design of a pooling layer structure for Region of
Interest (ROI). The pooling stage effectively solves the R-
CNN operation that crops and scales image regions to the
same size, speeding up the algorithm. Faster R-CNN replaces
the selective search method with Region Proposal Network
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(RPN) [84]. The selection and judgment of candidate frames
are handed over to the RPN for processing, and candidate
regions are subjected to multi-task loss-based classification
and localisation processes.

Several convolutional neural network-based object detection
frameworks have recently emerged that can run faster, have
a higher detection accuracy, produce cleaner results and are
easier to develop. Compared to the Faster RCNN model, the
YOLO model can better detect smaller objects, i.e. traffic
lights at a distance [86], which is important when detecting
objects in satellite images. Also, the YOLO model has a faster
end-to-end run time and detection accuracy than the Faster
RCNN [86]. Mask R-CNN upgrades the ROI Pooling layer of
the Fast R-CNN to an ROI align layer and adds a branching
FCN layer, the mask layer, to the bounding box recognition
for semantic mask recognition [85]. Thus, the Mask R-CNN
is essentially an Instance Segmentation algorithm, compared
to Semantic Segmentation1. Instance Segmentation is a more
fine-grained segmentation of similar objects than Semantic
Segmentation.

However, even traditional CNNs can be very useful for
large-scale image recognition. For example, Simonyan and
Zisserman [87] researched the effect of convolutional network
depth on its accuracy in large-scale image recognition settings.
Their research found that even with small (3x3) convolution
filters, significant accuracy is achieved by pushing the depth
from 16 to 19 weight layers.

In this research, the YOLO framework was selected. It uses
a multi-scale detection method, which enables it to detect
objects at different scales and to adapt to changes in the
size and shape of the objects being observed [88]. Besides,
YOLO is highly effective in detecting small objects with high
accuracy and precision [89]. This makes it an ideal choice for
detecting small objects in satellite imagery contexts, such as
small boats in coastal waters. Additionally, YOLO is highly
scalable, making it suitable for use in large-scale applications
[90].

Finally, this study intends to develop the first stages of
BoatNet. This image recognition model aims at detecting
small boats, especially leisure and fishing boats in any sea
area which, in turn and with further development, could
significantly reduce uncertainty in the estimation of small boat
fleet emission inventories in countries where access to tracking
infrastructure, costly satellite databases and labour-intensive
methodologies are important barriers.

III. CONVOLUTIONAL NEURAL NETWORK
CONFIGURATIONS

A. Target Areas in the Gulf of California and Dataset Statis-
tical Analysis

The Gulf of California in Mexico was chosen as an area of
study. Ideally, to analyse a sufficient amount of satellite image
data, the ports of each of the major harbour cities in the Gulf
of California would need to be included in the scope of our

1In computer vision, image segmentation is the process of partitioning an
image into multiple image segments, also known as image regions or image
objects.
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Fig. 2. Number of times the three cities (Santa Rosalia, Loreto, Guaymas)
captured by Google Earth Pro from 2018 to 2021.

study. Thus, the first step in this work was to determine if there
was enough satellite data for the area. In this study, the Gulf
of California was split into a few zones based on the Mexican
state limits: (1) Baja California, (2) Sinaloa, (3) Sonora, and
(4) Baja California Sur. The satellite dataset used in this
analysis included 690 high-resolution (4800 pixels x 2908
pixels) images of ships collected from Google Earth, where the
imagery sources are Maxar Techonologies and CNES / Airbus.
From the imagery dataset, a statistical analysis was performed
on how many times, temporally speaking, the satellite database
captured the region of interest. As a result of this analysis, it
was found that:

• most cities in the Gulf of California do not have enough
open-access satellite data in 2018 and 2021, while many
cities have relatively rich satellite data between 2019 and
2020;

• there has been a steady increase in the collection of
satellite data in the Gulf of California from 2018 to 2020;

• the open-access and high-quality satellite data from
Google Earth Pro is not immediately available to the
public;

• differences in data accessibility are still evident among
different cities. For example, Guaymas in the state of
Sonora has rich satellite images in 2019 and 2020.
However, other cities, such as La Ventana in the state
of Baja California Sur, did not appear on Google Earth
Pro between 2019 and 2020.

For this reason, continuing with the previous strategy of
analysing the satellite data for each city in the Gulf of
California would lead to a relatively large information bias and
thus would not achieve an effective object detection model.
Therefore, the following three cities with the richest data-
accessibility in Google Earth Pro were chosen as the target
areas for this study: Santa Rosalia, Loreto, and Guaymas (see
Figure 3 for their geographical locations). The number of times
captured by Google Earth Pro [91] is shown in Figure 2 with
a database of 583 images with timestamps between 2019 and
2020 for the three Mexican coastal cities.
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  Guaymas

Loreto

Santa Rosalía

Fig. 3. The geographic locations of the three target cities - Santa Rosalia,
Loreto, and Guaymas - in Google Maps.

B. Preprocessing

Each satellite image used for training was manually pre-
labelled with a highly-precise label box [92]. The original
dataset contained images larger than 9 MB, which is an
efficiency burden for neural network training, especially when
few objects are detected. For this reason, all images were
resized from 4800 pixels x 2908 pixels to 416 pixels x 416
pixels, with the file sizes reduced to between 10KB and
40KB [93].

Each satellite image for targeting or testing can be directly
extracted from Google Earth Pro. Before downloading these
images, few things were done first. Firstly, it was needed to
remove all the layers from Google Earth Pro. Then, it was
necessary to open the ”Navigation” tap of the ”Preferences”
menu, clicked ”Do not automatically tilt while zooming”. This
allowed to get the images available which were directly above
sea level. Finally, the eye altitude was set to 200 m and the
images were saved in 4800 pixels x 2908 pixels.

C. Single Object Detection Architecture

Figure 4 shows a schematic of the models being used
for detecting boats, where satellite images in the Gulf of
California are the input of a pre-trained convolutional neural
network (CNN). The detection accuracy was determined by
computing the mean probability score from the Gulf’s satellite
images. In Sec II-C, recent literature and the development
of Convolutional Neural Networks (CNNs), including the
YOLO model, were discussed. YOLOv5 has four different
categories of models, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x [94]. They have 7.3 million, 21.4 million, 47.0
million and 87.7 million parameters, respectively. The per-
formance charts can be seen as Figure 5 where the YOLOv5l
model can achieve higher average precision with the same
faster computing speed. Thus, in this study, it was used Google
Colab’s Tesla P100 GPU2 and the YOLOv5 framework.

Satellite images often contain noise such as shadows cast
by water on the sea surface or haze clouds in the atmosphere,
which make the training data inaccurate and often cause
problems ensuring the model’s correctness. He et al. [95]
proposed a simple but effective image prior-dark channel

2Colab Pro limits RAM to 32 GB while Pro+ limits RAM to 52 GB. Colab
Pro and Pro+ limit sessions to 24 hours.

before removing haze from a single input image. The prior-
dark channel can be used as a statistic of outdoor haze-free
images. Based on critical observation, most local patches in
outdoor haze-free images contain some pixels whose intensity
is very low in at least one colour channel. Using this prior-
dark channel before the haze imaging model, the thickness of
the haze can be estimated, and a high quality haze-free image
can be recovered. Moreover, a high quality depth map can also
be obtained as a byproduct of haze removal. In the same way,
shadows can be removed using prior-dark channel.

Similar to the principle of using convolution kernels, spe-
cific image kernels can sharpen the image. While the sharp-
ening kernel does not produce a higher resolution image, it
emphasises the differences in adjacent pixel values, making
the image appear more vivid. Overall, sharpening an image
can significantly improve its recognition accuracy with a 5x5
image kernel.

D. Object Measurement and Classification

Measuring the length of a ship is one of the most chal-
lenging topics in this study. As Google Earth Pro does
not provide an Application Programming Interface (API) for
accurate scales, manually measuring the size of a particular
scale became the core process to calculate the size of any
given ship. To achieve that is important that all of the captured
satellite images have the same eye altitude. By measuring only
one real length of the object through the Google Earth Pro
measurement tool and knowing the pixel length of this object,
the length of one pixel in the satellite image of the fixed eye
altitude can be calculated.

As the dataset for the training model was created with each
edge tangent to the edge of the detected object, it can roughly
treat the boat’s length as the length of the diagonal within
the detection box. Secondly, since the scale is central to the
detection of the small boat fleet, the imagery scale should
follow the following rules:

• cannot be too large. The image should contain the full
area in which boats may be found.

• cannot be too small. If this is not followed it is highly
probable that the group of boats are detected as a single
but larger boat.

• be sufficiently clear. This characteristic allows the algo-
rithm to quantify the boat’s length and accurately classify
the measurements.

The eye altitude was set to 200 m based on the above rules.
This study used a satellite image of Zurich Lake, Switzerland,
on the 16th August 2018 as the standard image for defining
the scale (Figure 6). Compared with other regions, the satellite
image of Zurich Lake complies with the rules, and it is a
suitable candidate as the standard for measuring the length of
small boats. This standard was then used for the rest of the
imagery database.

A length measurement comparison was made between the
BoatNet framework and Google Earth Pro to validate the
length method. The vessel in Figure 6 had a YOLO length of
0.43 that, after the scale conversion, represented 55.17 m. With
an eye altitude of 200 m, the ratio of the absolute length to
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Fig. 4. Model architecture. Detection model architecture for obtaining a conclusion from an input satellite image of boats. Images are preprocessed and
passed through a CNN. The model’s output is a score, y ∈ (0, 1), representing the probability of being detected as a boat.

Fig. 5. Average Precision (AP) vs GPU Speed in the 6th generation of
YOLOv5 model under COCO data set [86] [94].

Fig. 6. An image from Google Earth Pro for Zurich Lake on 16 Aug 2018
when eye alt is 200 m.

the YOLO length was approximately 127. Finally, after several
verification tests, this ratio returned a small margin of error
(around 1% to 3%) and hence was deemed a suitable scaling
ratio for the remaining images. Moreover, having the same
ratio and eye altitude was not enough. The resolution of each
image must be the same, so measurements are standardised.
For this purpose, all datasets that detect small boats will
maintain a resolution of 3840x2160 pixels.

In a certain sense, large vessels (e.g. cargo ships) and small
vessels (e.g. small boats for domestic use) are distinguished
when creating the dataset for the area of interest. However, due
to the scaling, some large vessels such as general cargo ships
do not appear fully in an image. Hence they are not considered
in the statistical results of this work. On the other hand, some
of the larger vessels, slightly shorter in length than the 200 m

eagle eye scale, are identified correctly by the algorithm and
counted as part of the number of large vessels in the area. A
Python script was then designed to count the number of small
and large boats between regions.

After distinguishing between large and small boats, it is
necessary to distinguish between small recreational boats for
domestic use and fishing boats. The model used the detected
deck colour of the small boat to distinguish between them.
If the deck was predominantly white, it was assigned a
recreational boat, while any other mix of colour would be
designated a fishing boat. It is recognised that this is a broad
and simplistic classification method, but it is an effective one to
test the categorisation power of the model. Each of the detected
boats (i.e. the objects within the four coordinate anchor box)
were analysed whether the colour was white or mainly white to
assign it to each category. As a final step, the model performed
the category counting for each image, where a Python script
was designed to count the small white boats.

IV. RESULTS

A. Train Custom Data: Weights, Biases Logging, Local Log-
ging

As shown in Figure 7, the average accuracy, precision,
and recall of the model all show a significant increase with
the model training number when the Intersection Over Union
(IOU)3 is between 50% and 95%. In particular, the precision of
the model can eventually reach a level close to 96%. However,
this does not necessarily mean that the model will also fit the
satellite imagery of the Gulf of California. First, such high
accuracy results only tell us that the model can achieve a
relatively high recognition accuracy, which gradually increases
and reaches 96% after 300 training repetitions. In the case that
the algorithm needs to be trained for this area, consideration
must be given to purposefully selecting many small boats in
or near the area as a data source for training the model.

To train models faster, a reduction of the images’ resolution
of about 70 times, resulting in images of 416 pixels x 416
pixels. The training could otherwise take two weeks if the
images used had a resolution of 4800 pixels x 2908 pixels.

Similarly, as shown in Figure 8, the loss rate of the box
can eventually reach 1% as the number of training sessions
increases. Since this study has defined only one class of object

3IOU is an evaluation metric used to measure the accuracy of an object
detector on a particular dataset.



8

Fig. 7. Average model precision when IOU is larger than 0.50; Average
model precision when IOU is between 0.50 and 0.95; The model precision;
The model recall rate.

Fig. 8. The box loss rate of the model; The class loss rate of the model; The
object loss rate of the model.

(i.e. boat), the probability that the detection box does not detect
that it is a boat at all is 1%. Similarly, because there is only one
class, the class loss rate is 0. Figure 9 presents the prediction
results during the training of the model, and shows that the
model can detect the presence of vessels in 100% of the tested
ranges and gives the corresponding range boxes. Most detected
boats have a 90% probability of being boats, an acceptable
value for object detection. Since only one class was set, some
were also considered a 100% probability of being boats.

B. Detection Results and Small Boat Composition

Starting with the length measurement comparison of a
detected small boat and a large ship by BoatNet against Google
Earth Pro measuring tools, Figure 10 shows that the small
boat detected measured 6.98 m using Google Earth Pro, while
BoatNet estimated 6.74 m. The error between them is 3.4%.
Google Earth Pro measured the larger ship at 41.38 m and
BoatNet at 40.98 m. The error between them is less than 1.0%.

As explained in Sec III-C, it was unproductive for the model
to select the entire region for the study due to the varying
amount of publicly available regional images from Google
Earth Pro over the past three years. Ultimately, the satellite
image database was built from 690 images. However, as stated
in Sec III-C, some of the slightly earlier satellite images of-
fered inferior detail representation capabilities, which resulted
in the model not accurately detecting the target’s features. To

Fig. 9. Test result of a trained model for detecting ships.

Fig. 10. Compare the length of boats using Google Earth ruler and computer
vision algorithm. This example shows the image from Google Earth Pro for
Zurich Lake on 16th August 2018 when the eye alt was 200 m.

improve model accuracy, an image enhancement process using
a 5x5 sharpening kernel allowed for a higher recognition rate.
However, the following situations still occur:

1) Figure 11: When the detailed representation of the image
is indigent, i.e., the images are blurred, and two or three
small boats are moored together, the model is very likely
to recognise the boats as a whole. There are two reasons
for this problem. First, the training data is primarily a
’fuzzy’ data source. Thus, when two or three small boats
are moored together, the model cannot easily detect the
features of each small boat individually. In contrast, it
may seem more reasonable to the model that the boats
as a whole have the same features. The second reason
is that most data sources are individual boats on the
surface or boats docked close to each other. As the
data sources do not fully consider the fuzzy nature of
the detail needed to detect the object and the fact that
they are too close together, the model naturally does not
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Fig. 11. When small boats are moored closely together in the harbour, the
model may recognise two small boats as one. The image is from Guaymas,
January 2020.

Fig. 12. When the cargo ship is full of cargo, the ship looks like a rectangular
jetty from above and loses the normal shape of a ship. The image is from
Guaymas, January 2020.

recognise such cases.
2) Figure 12: When a large cargo ship is moored, the

ship appears as a ’rectangle’ from the air, much like a
long pier, and is sometimes undetectable because small
vessels with a rectangular shape were not common at
the time the data feed was compiled. This also applies
to uncommon vessels such as battleships. This could be
corrected if the model considered larger ships, but this
was outside the scope of this work.

3) Figure 13: The recognition rate was also significantly
lower when the boats sometimes lay on the beach rather
than floating on the water. This is because most of the
training data are based on images in the water rather
than boats on the beach.

Nevertheless, as Figures 11, 12, 13 demonstrate, the model
still detects most small boats in poorly detailed satellite
images, even those that the human eye cannot easily detect.
The number of small and large ships between regions can be
seen in Figure 14 and Figure 15. Two different types of port
cities are exemplified by Guaymas, Loreto and Santa Rosalia:

1) Santa Rosalia and Loreto have a much smaller number
of small boats and almost no large ships.

2) The port of Guaymas presented a larger number of
small boats when contrasted to the other two coastal

Fig. 13. Models may have difficulty detecting small boats moored on the
beach. The image is from Santa Rosalia, February 2021.

Mar-20 Jun-20 Sep-20 Dec-20
Small boats 323 283 215 187
Large ships 46 38 50 43

Small white boats 302 273 210 174
Shipping boats 21 10 5 13

TABLE I
DETECTION EXAMPLE. SMALL BOATS, LARGE SHIPS, AND SMALL WHITE

BOATS IN GUAYMAS IN 2020.

cities. There were between 1.37 and 8.00 times more
small boats detected in Guaymas than in Santa Rosalia
(dependent on the month and year of the image) and
3.00 times more than in Loreto.

3) Guaymas had a larger number of large ships as well.
There were more than ten times more large ships de-
tected in Guaymas than in Santa Rosalia and Loreto.

4) In the relatively large seaports of Guaymas and Loreto,
there is a tendency for both large and small vessels to
decrease with time.

In fact, according to statistic [96] from the Mexican gov-
ernment, in 2020, the populations of Guaymas, Loreto, and
Santa Rosalia were 156,863, 18,052, and 14,357, respectively.
Therefore, the results infer that the number of detected boats
is correlated to the number of habitats, which makes sense
since, by probability, there would be more economical and
leisure activities around larger coastal cities.

C. Leisure and Fishing Boats in the Gulf of California

According to the statement in Sec III-C, determining
whether a boat is white can be used as a criterion to determine
whether a boat is used for recreation or fishing. As seen
in Table I, most of the small boats captured in the photo
of Guaymas in 2020 are white ( i.e. all can be classified
as recreational boats). However, as previously discussed, this
conclusion is limited since the algorithm does not consider, for
example, other colours as part of the characteristics of leisure
boats. Furthermore, although there are many uncertainties in
detecting the colour of the boats, the algorithm also considers
situations where the colour is not fully white due to atmo-
spheric refraction, weather conditions, or cloud interference.
The algorithm also considers cases where the boat’s colour
is light. Therefore, this approach is acceptable from the point
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of view of algorithm complexity, results, and detecting data
quality.

V. DISCUSSION

This study demonstrated the capabilities of a deep learning
approach for the automatic detection and identification of
small boats in the waters surrounding three cities in the Gulf
of California with a precision of up to 74.0%. This work
used CNNs to identify types of small vessels. Specifically, this
study presented an image detection model, BoatNet, capable
of distinguishing small boats in the Gulf of California with an
accuracy of up to 93.9% and encouraging results considering
the high variability of the input images.

Even with the model level of performance using large and
highly ambiguous training images, it was found that image
sharpening improved model accuracy. This implies that access
to better quality imagery, such as that available through paid
for services, should considerably improve model precision and
training times.

The results of this research have several important implica-
tions. First, the study used satellite data to predict the number

and types of ships in three important cities in the Gulf of
California. The resulting analysis can contribute to the region’s
shipping fleet composition, level of activity and ultimately
their carbon inventory by adding the emissions produced by
the small boat fleet. Further, through this approach, it is
also possible to assign emissions into regions supporting the
development of policies that can mitigate local GHG and air
pollution. In addition, the transfer learning algorithm can be
pre-trained in advance and immediately applied to any sea area
worldwide. This will provide a potential method to increase
efficiency for scientists and engineers worldwide who need to
estimate local maritime emissions. In addition, the model can
quickly and accurately identify the boat’s length and classify
them, allowing researchers to allocate more time to the vessels
they need concentrate on, not just small boats. Finally, all of
the above benefits can be exploited in under served areas with
a shortage of infrastructure and resources.

This work is the first step to building emission inventories
through image recognition, and it has some limitations. The
study considered the ship as a single detection object. It did
not evaluate whether the model can improve the accuracy of
identifying ships in the case of multiple detection objects. For
instance, BoatNet was not trained to detect docks to improve
the metrics of detecting boats. By down-sampling the image
to 416 pixels × 416 pixels, it is possible to mask some of
the boats at the edges of the photograph. Furthermore, deep
learning models train faster on small images [97]. A larger
input image requires the neural network to learn from four
times as many pixels, increasing the architecture’s training
time. In this work, a considerable proportion of the images
in the dataset were large images of 4800 pixels x 2908 pixels.
Thus, BoatNet was set to learn from resized small images
measuring 416 pixels x 416 pixels. Due to the low data quality
of the selected regions, the images are less suitable as training
datasets. However, using datasets from other regions or higher
quality open-source imagery may result in inaccurate coverage
of all types of ships in the region. When focusing on the
small boat categorisation and the data used, understanding the
implications of different environments (e.g. water or land) on
object classification accuracy through the AI fairness principle
deserves further study. From this point of view, large-scale
collection of data sources in the real physical world would
be costly and time-consuming. That said, it is possible that
reinforcement learning, or building simulations in the virtual
world, could reduce the negative impact of the environment
on object recognition and thus improve its categorisation pre-
cision. Of all these limitations, model detection still achieves
excellent performance in detecting and classifying small boats.
To enrich the analysis, one of the future work planned is
comparing research results with different algorithms for the
same problem.

It is important to remember that BoatNet currently only
detects and classifies certain types of small boats. Therefore,
to estimate fuel consumption and emissions, it is necessary
to couple it with small boat behaviour datasets [65], typical
machinery, fuel characteristics, and emission factors unique to
this maritime segment [39].

Finally, this work has demonstrated that deep learning
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models have the potential to identify small boats in extreme
environments at performance levels that provide practical
value. With further analysis and small boat data sources, these
methods may eventually allow for the rapid assessment of
shipping carbon inventories.
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Nevárez-Martı́nez, S. Ortega-Garcı́a, E. Palacios-Castro, A. Parés-
Sierra, G. Ponce-Dı́az, M. Ramı́rez-Rodrı́guez, C. A. Salinas-Zavala,
R. A. Schwartzlose, and A. P. Sierra-Beltrán, “The gulf of california:
Review of ecosystem status and sustainability challenges,” Progress in
Oceanography, vol. 73, no. 1, pp. 1–26, 2007. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0079661107000134

[42] A. Munguia-Vega, A. L. Green, A. N. Suarez-Castillo, M. J. Espinosa-
Romero, O. Aburto-Oropeza, A. M. Cisneros-Montemayor, G. Cruz-
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