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Dear editor, 

This is a follow up manuscript to the highly cited “The global distribution of seamounts based on 30 

arc seconds bathymetry data” (https://doi.org/10.1016/j.dsr.2011.02.004  – currently 125 citations). 

This manuscript provides an update of the seamount predictions, along with a valuable observation 

on the reliability of bathymetry grids.  

Kind regards 

Chris Yesson & co-authors 

https://doi.org/10.1016/j.dsr.2011.02.004
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Abstract. Seamounts are important marine habitats that are hotpots of species diversity. Relatively shallow peaks, increased 11 

productivity and offshore locations make seamounts vulnerable to human impact and difficult to protect. Present estimates of 12 

seamount numbers vary from barely 10000 to more than 60000), because locating and identifying them remotely can be 13 

difficult. Seamount locations can be estimated by extracting conical shaped features from bathymetry grids. These predicted 14 

seamounts are a useful reference for marine researchers and can help direct exploratory surveys. However, these predictions 15 

are dependent on the quality of the surveys underpinning the bathymetry. Historically, quality has been patchy, but is 16 

improving as mapping efforts step up towards the target of complete seabed coverage by 2030. 17 

This study presents an update of seamount predictions based on the most recent SRTM30 global bathymetry. This update 18 

was prompted by a seamount survey in the British Indian Ocean Territory, where locations of two putative seamounts, based 19 

on several previous global seamount predictions, were visited, but no such features were detected during echosounder 20 

surveys. An examination of Admiralty charts for the area showed that the summits of these putative features had soundings 21 

reporting “no bottom detected at this depth” where “this depth” was similar to the seabed reported from the bathymetry 22 

grids: we suspect that these features likely resulted from an initial misreading of the charts. We show that perhaps 15 23 

phantom seamount features, derived from a misinterpretation of no-bottom sounding data, persist in current global 24 

bathymetry grids and updated seamount predictions.  Overall, we predict 37,889 seamounts, an increase of 4,437 from the 25 

previous prediction derived from an older global bathymetry grid. This increase is due to greater detail in newer bathymetry 26 

grids as acoustic mapping of the seabed expands. 27 
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Introduction 30 

Seamounts are ’undersea mountains’, and although many definitions of this term have been used, they are commonly 31 

described as conical features that rise more than 1000m above the surrounding seabed (IHO 2008). Seamounts are important 32 

marine habitats, they provide a pathway for localized production (Hosegood et al., 2019), often increasing surrounding 33 

biomass and species diversity (Letessier et al., 2017), they can be hotspots of predator biodiversity in the open ocean 34 

(Morato et al., 2010), home to habitat-engineering species such as cold water corals (Tracey et al., 2011), important 35 

spawning grounds (Tsukamoto, 2006), and even act as refugia from ocean acidification for carbon-calcifying species 36 

(Tittensor et al., 2010). 37 

The increased productivity associated with seamounts makes them attractive targets for fishing, and hence vulnerable to 38 

human impacts, particularly those with accessible summits near the surface. Fishing gear can cause long-lasting damage to 39 

habitat forming organisms associated with some seamounts (Althaus et al., 2009). Protection of seamount habitats is a 40 

priority for marine conservation (Morato et al., 2010), but our knowledge on these habitats remains limited, with estimates of 41 

only 0.4-4% of seamounts having been directly surveyed (Kvile et al., 2014). 42 

Direct surveys require significant investment of resources and planning, and fundamental to this is identification of locations 43 

of interest for the survey. However, we do not yet know how many seamounts there are, with estimates ranging from the tens 44 

to hundreds of thousands (Yesson et al., 2011). This has led to the publication of many predictive maps and databases of 45 

potential seamount locations, commonly based on pattern recognition of underlying bathymetry data (Yesson et al., 2011; 46 

Harris et al., 2014), but also using satellite altimetry to detect larger features (Wessel, Sandwell, and Kim 2010; Kim and 47 

Wessel, 2011). 48 

Seamount predictive maps are dependent on the underlying data to extract features. Global bathymetry grids such as GEBCO 49 

(Weatherall et al., 2015) and SRTM (Becker et al., 2009) are themselves models based on a combination of soundings (i.e. 50 

high resolution acoustic surveys) and satellite altimetry (lower resolution data from satellite sensors). Satellite- altimetry 51 

provides global coverage and is the foundation of bathymetry models, but these sensors cannot determine small features (i.e. 52 

seamounts under 1.5km, Wessel et al., 2010). Acoustic surveys generate data best suited for determining seabed depth and 53 

these are used to constrain models used to create bathymetry grids (Becker et al., 2009). Despite global efforts to improve 54 

coverage, such as the Nippon Foundation-GEBCO challenge to survey the ocean floor across the globe by 2030 (Wölfl et al., 55 

2019), soundings in the latest bathymetry grids are limited to a small proportion of the ocean, and the majority of bathymetry 56 

grid data is derived from the underlying model rather than acoustically surveyed. For example, only 18% of current GEBCO 57 

grid cells (each 30x30 arc seconds ≈ 1x1km at the equator) are directly supported by acoustic surveys (Weatherall et al., 58 

2015).  With so little sounding data available, there is a premium on making full use of all data available, and historical 59 

soundings (based on weighted lines) have been extracted from nautical charts to expand these data (Becker et al., 2009). 60 
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BIOT Seamount Survey 61 

The British Indian Ocean Territory (BIOT) is a region of the Indian Ocean encompassing a variety of undersea features, 62 

including the flat shallow banks of the Chagos Archipelago, and the high slopes of the Chagos-Laccadives ridge, and depths 63 

beyond 5000m (Sheppard et al., 2012). The area could be home to as many as 86 seamounts, based on estimates from an 64 

automated seamount-recognition algorithm applied to version 6 of the SRTM global bathymetry grid (Yesson et al., 2011).  65 

Two of these predicted seamounts, clearly discernible on the latest bathymetry grids, were targeted during a 2016 survey 66 

around the Chagos Archipelago (Letessier et al., 2016), between 5-24th February. These are seamounts ID 4050548 (latitude 67 

-5.354, longitude 71.292, summit depth 481m) and ID 4060551 (lat. -5.733, long. 71.396, depth 141m) from Yesson et al., 68 

(2011). The survey sought to visit these features for the purpose of establishing baseline monitoring sites for mobile oceanic 69 

predators (Letessier, Bouchet, and Meeuwig 2017). Seamounts in BIOT have previously been shown to be important 70 

location of bio-physical coupling between reef and pelagic ecosystems, and may therefore support elevated numbers of 71 

predators (Hosegood et al., 2019; Letessier et al., 2016; Letessier et al., 2019). Acoustic data were collected using a Simrad 72 

(Bergen, Norway) EK60 echosounder operating at 38 kHz with a pulse length of 1.024ms and ping rate of 2s. At these 73 

settings, the seabed was detectable up to 1,500m below the surface. Seabed was detected at around this depth for seamount A 74 

(predicted depth 183m), but no seabed was detected around the area of seamount B (predicted depth 491m) despite circling 75 

around the supposed summits up to 5km (Fig. 1 & 2). 76 

  77 
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 78 

Figure 1: Location of survey conducted in 2016. Top shows depth contours based on the 2014 GEBCO bathymetry grid, bottom 79 
shows depth contours derived from SRTM v11. Both grids indicate the presence of a conical seamount c.20km NW of the Great 80 
Chagos Bank. No feature was detected by the 2016 survey (ship’s track shown with black dashed line). Around 40km north of this, 81 
is another predicted seamount, again not detected on the 2016 survey. This feature is predicted by the GEBCO grid, but is not 82 
shown in the SRTM grid (although present in previous versions). Map projection UTM zone 43 south (epsg:32743).   83 
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 84 

Figure 2: Latitudinal transects across apparent positions of the two phantom seamounts. Black triangles indicate the position and 85 
summit depth of the predicted seamounts.  Colormap is Volume Backscattering Strength (Sv). A deep scattering layer was 86 
observed at c.450m for both sites. Seabed was observed at site A c.1500m. No seabed was detected for site B. 87 

An examination of the admiralty chart for the region provided some insight. Soundings on charts are recorded by displaying 88 

the depth reading over the location. A different class of sounding is also recorded. Soundings where no bottom was recorded 89 

are annotated with 
.

𝐷𝑒𝑝𝑡ℎ
 at the location of the sounding. These soundings are typically old, prior to the nineteenth century, 90 

dating from when soundings where conducted using handheld, weighted, lead lines, before the widespread use of sounding 91 

machines. It is easy to mistake these as bottom soundings, and this appears to be the root cause of the ’phantom seamounts’. 92 

For seamount A (Fig. 1) there is a sounding in the chart at the summit of the mound seen on the bathymetry grids. The chart 93 

shows no bottom recorded at 183m, while the GEBCO depth at this cell is 179m and SRTM depth is 183m. 94 

However, the SRTM grid at the site of seamount B does not show a seamount-like feature, in contrast to GEBCO, which 95 

shows an isolated point of markedly higher elevation, which is interpreted as a conical seamount-like peak by seamount 96 

detection algorithms. It is noted that previous versions of the SRTM grid showed a seamount-like feature at this location. 97 

The version history reports the removal of isolated and outlier “bad pings” prior to the construction of version 11. The 98 

revision of SRTM has removed other seamount-like features from the revised bathymetry grid (i.e. NW corner of Fig. 1). It 99 

is apparent that bathymetry grids such as GEBCO and SRTM have mistakenly used these “no seabed detected” observations 100 

as soundings indicating seabed depth, and in regions with sparse sounding data, these spatially isolated erroneously 101 

interpreted records are sufficient to create a local maxima that creates the appearance of a seamount in the final bathymetry 102 

grid.  103 

This study aims to update the Yesson et al., (2011) seamount predictions using the latest available bathymetry, and assess the 104 

impact of no bottom sounding data on the prediction of seamounts. 105 

 106 
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Methods 107 

Version 11 of the Shuttle Radar Topography Mission global bathymetry (Becker et al., 2009 – version 11 released 2014) was 108 

used to update the seamount prediction estimates of Yesson et al., (2011), using the same methodology previously reported 109 

based on the local radial inspection of the surrounding area of local summits (Yesson et al., 2011).  110 

New seamount predictions were compared with the previous dataset (Yesson et al., 2011 – henceforward the ‘old’ dataset). 111 

Seamounts were defined as in the old dataset if the seamount bases of the latest predictions encompassed the summit of old 112 

seamount predictions. Seamount bases are defined by 8 radii 45° apart that terminate at the point the descent from the 113 

seamount summit levels off up to a maximum of 20km from the summit (thus the maximum base area is ~1,131 km2).  The 114 

seamount bases can (and do) encompass multiple peaks in the old dataset.  115 

A dataset of ‘no bottom sounding’ observations was provided by Oceanwise Ltd, from a dataset of depth readings from 116 

digitised admiralty charts. These data include 1009 observations from charts covering the majority of the Atlantic and East 117 

Pacific, but with little data from the Southwest Indian Ocean and West Pacific. The depth readings of no-bottom soundings 118 

that were spatially located within seamount bases were compared with the summit depths.  119 

Results  120 

The total number of seamounts predicted based on the SRTM v11 bathymetry is 37,889. A map of these is presented in Fig. 121 

3. There are 32,340 seamounts in the new dataset that overlap with predictions from Yesson et al., (2011) and 5,549 (15%) 122 

that do not. Conversely, of the Yesson et al., (2011) seamount predictions there are 3,429 / 33,452 (10%) that do not overlap 123 

with the seamount bases of the new dataset. 124 

Of the 1009 ‘no bottom sounding’ records, only 15 overlap with seamounts that are similar in depth (+/-50m) to the peak of 125 

the predicted seamount. In contrast there are 14 seamounts that fit this pattern from the 2011 dataset.  These “phantom 126 

seamounts” are focused in the Indian Ocean (12/14 from 2011 data and 12/15 from the updated dataset), with 4 potential 127 

phantom seamounts around Chagos Bank and 6 from the southern Mascarene Plateau (Fig. 4).  128 

  129 
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 130 

Figure 3: Map of predicted seamounts. New Seamounts are those in the new prediction that are not found in the Yesson et al., 131 
(2011) dataset. “Consistent predictions” are new predictions that are spatially consistent with Yesson et al., (2011), while those no 132 
longer considered seamounts are present in Yesson et al., (2011) but not in the updated dataset. Robinson map projection 133 
(EPSG:54030). Grid lines at 30° intervals.  134 
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 135 

Figure 4: Focus on Seamounts of NW Indian Ocean. Robinson map projection (EPSG:54030).  136 

Discussion 137 

The 37,889 seamounts predicted from the latest SRTM bathymetry represents an increase in number (4,437=13%) of 138 

seamounts predicted from the previous study (N=33,452). The revised predictions are higher than other predictions that post-139 

date Yesson et al., (2011) such as 24,643 seamounts in the Kim & Wessel (2011) dataset and 10,234 of Harris et al (2014), 140 

but it is still lower than some other predictions, e.g. 68,669 of Costello et al., (2010).  It is worth noting that each of these 141 

studies uses different ways of detecting seamounts, for example Harris et al., (2014) have a stricter definition of seamount 142 

that excludes features along ridges. 143 

Regardless of the methodology used, it is important to keep prediction datasets up-to-date with the latest bathymetry grids. 144 

We expect the expansion of multibeam echosounder data (Wölfl et al., 2019) to allow the detection of smaller (<1.5km) 145 
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features in regions where previously bathymetry grids relied on only coarse resolution satellite-derived data, which is why 146 

authors have extrapolated their ‘detected’ seamount numbers to higher global estimates (e.g. Kim & Wessel, 2011 detect 147 

24,643 seamounts, but extrapolate this to a global total of 40,000-55,000). This pattern of increased seamount detection as 148 

more acoustic data becomes available fits our observation.  149 

However, there is a competing pressure that may lead to a reduction of seamount numbers, as isolated ‘bad pings’ or 150 

erroneous readings are removed from bathymetry grid construction, so features defined by these mistakes will be removed 151 

(Becker et al., 2009; Weatherall et al., 2015). Although the scale of this error appears to be small, and the bathymetry grids 152 

are improving their products, all of these issues have not yet been removed.  153 

Finally, although these predictions are based on a global bathymetry grid, we note that seamount predictions based on the 154 

lat-long bathymetry grid perform poorly at high latitudes where there is a large spatial distortion. Seamount predictions for 155 

Arctic and Antarctic regions should be remade based on polar specific grids such as the International Bathymetric Chart of 156 

the Arctic Ocean (IBCAO -  Jakobsson et al., 2012). 157 

Conclusion 158 

Bathymetry grids are continually improving (Wölfl et al., 2019), whether that be from new multibeam acquisition, such as 159 

that collected during the search for Malaysian Airlines flight MH370 (Smith and Marks 2014), or improved satellite gravity 160 

data (Sandwell et al., 2014). However, these bathymetry grids still rely on sparse sounding data for many regions, and thus 161 

have the capacity to mislead if in-valid historical weighted line measurements are used in the construction of bathymetric 162 

models as isolated falsely interpreted records can lead to the appearance of “phantom seamounts”.  Therefore, it is important 163 

that we use all the information available, including multiple seamount predictions, multiple bathymetry models and printed 164 

charts to assess potential seamount distributions, particularly when planning surveys to unsampled seamounts, or in the arena 165 

of conservation planning, where seamount distributions can be used as proxies for endangered predator distributions 166 

(Bouchet et al., 2014).  167 

Data availability 168 

Updated seamount predictions are available to download at (tbc). 169 
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