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An Engineering Model of the Covid-19 Trajectory to Predict the Success of Isolation Initiatives 

Steven King and Alberto Striolo* 
University College London 

Department of Chemical Engineering 

 

Abstract 

Much media and societal attention is today focused on how to best control the spread of Covid-19. 
Every day brings us new data, and policymakers are implementing different strategies in different 
countries to manage the impact of Covid-19. To respond to the first ‘wave’ of infection, several 
countries, including the UK, opted for isolation/lockdown initiatives, with different degrees of rigour. 
Data showed that these initiatives have yield the expected results in terms of containing the rapid 
trajectory of the virus. When this manuscript was first prepared (April 2020), the affected societies were 
wondering when the isolation/lockdown initiatives should be lifted. While detailed epidemiologic, 
economic as well as social studies would be required to answer this question completely, we employ 
here a simple engineering model. Albeit simple, the model is capable of reproducing the main features 
of the data reported in the literature concerning the Covid-19 trajectory in different countries, including 
the increase in cases in countries following the initially successful isolation/lockdown initiatives. 
Keeping in mind the simplicity of the model, we attempt to draw some conclusions, which seem to 
suggest that a decrease in the number of infected individuals after the initiation of isolation/lockdown 
initiatives does not necessarily guarantee that the virus trajectory is under control. Within the limit of 
this model, it would appear that rigid isolation/lockdown initiatives for the medium term would lead to 
achieving the desired control over the spread of the virus. This observation seems consistent with the 
2020 summer months, during which the Covid-19 trajectory seemed to be almost under control across 
most European countries. Consistent with the results from our simple model, winter 2020 data show 
that the virus trajectory was again on the rise. Because the optimal solution will achieve control over 
the spread of the virus while minimising negative societal impacts due to isolation/lockdown, which 
include but are not limited to economic and mental health aspects, the engineering model presented here 
is not sufficient to provide the desired answer. However, the model seems to suggest that to keep the 
Covid-19 trajectory under control, a series of short-to-medium term isolation measures should be put 
in place until one or more of the following scenarios is achieved: a cure has been developed and has 
become accessible to the population at large; a vaccine has been developed, tested, and distributed to 
large portions of the population; a sufficiently large portion of the population has developed resistance 
to the Covid-19 virus; or the virus itself has become less aggressive. It is somewhat remarkable that an 
engineering model, despite all its approximations, provides suggestions consistent with advanced 
epidemiologic models developed by several experts in the field. The model proposed here is however 
not expected to be able to capture the emergence of variants of the virus, which seem to be responsible 
for significant outbreaks, notably in India, in the spring 2021, it cannot describe the effectiveness of 
vaccine strategies, as it does not differentiate among different age groups within the population, nor it 
allows us to consider the duration of the immunity achieved after infection or vaccination. 
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1. Introduction 

The development of the Covid-19 pandemic both in terms of geographical footprint and the growth of 
cases and fatalities has been the subject of opportune comment and provided the news media with 
constant and compelling feed since the end of 2019. Along with several detailed analyses of the spread 
of the pandemic in different parts of the World,1-3 current studies address the impact of easing the 
restrictions imposed to contain the spread of the virus,4 descriptors that enhance or curtail the negative 
impact of an infection on humans,5,6 the development of animal models to eventually test a vaccine,7 
the physiology of the virus itself,8-10 ethical aspects related to the development of a vaccine,11-13 plans 
for the distribution of vaccines,14 once they are developed, as well as the impact of different mitigation 
strategies on the viral trajectory15. This list is not exhaustive, given the tremendous importance of the 
topic. Concerning predictions regarding the spread of the pandemic, wide variations are noted on the 
expected future outcomes, both at the time of this writing and when the first version of this manuscript 
was prepared (in April 2020). To overcome these wide variations, modelling has been attempted here 
using an engineering differential model, which, if successful, could provide an evidence-based 
prediction of future expectations once few parameters are fitted to hard data. It should be emphasised 
that the model we are after has many simplifications, and its main attributes are the ease of use and the 
ability to reproduce available datasets. Therefore, a SIR-type model was chosen because it has a long 
history in modelling infection propagations in populations.16 SIR models consider 3 classes of 
individuals: S – susceptible; I - infected and R - recovered (or deceased).  The approach was developed 
in 1927 by Kermack and Kendry,17 and indeed it has been successfully applied since to the modelling 
of large historical epidemics. Both capacity and limitations of SIR type models are well understood and 
documented;18 for example, their assumptions somewhat limit their ability to completely describe 
infection numbers, and the connection between infected period and potential to spread infection is not 
included as a critical parameter.19 The SIR model formulation has been extended to acknowledge the 
influence of other parameters;1,20 the effects of  population mixing and variations in size have been 
examined21  and it has been acknowledged that minor changes in the model parameterisation can 
produce predictions of complicated behaviours. Including these additional parameters would yield 
models capable of describing complicated infection dynamics to effectively model the trajectory of the 
Covid-19 infection but would require knowledge of a greater number of parameters. Therefore, we 
made the conscious choice of applying the basic formulation of the SIR model in our analysis. 

The purpose of this study was to model the trajectory of the Covid-19 infection with specific 
consideration in modelling the effect of isolation/lockdown directives on said trajectory. Before the 
advent of effective vaccines, it became apparent that the degree of compliance to isolation/lockdown 
directives is the most effective strategy to manage the physical footprint of the virus,22,23 which seems 
to validate the conclusions achieved by the implementation of simple SIR models.  

A simple model such as the one chosen here offers the advantage of easily identifying the defining 
equations and the governing parameters, with the benefit of explicit coupling of isolation/lockdown 
effectiveness to rate constants. Then the quest was whether such a minimal model was still capable of 
providing useful predictions on future possible trajectories of Covid-19 infections. As our model was 
constructed during the early period of the Covid-19 pandemic, when response strategies such as social 
controls, dedicated hospitals and travel restrictions were being introduced, the most robust modelling 
strategy was considered to be the one involving the least number of unknown parameters. Although we 
recognise that more complete models provide a physical description of the mechanisms of spreading 
and recovering from the infection, among others, the merits of simple models in terms of ease of 
understanding of the implications of directives and public behaviour have been widely 
acknowledged.24,25 Since the first draft of this manuscript was produced (April 2020), the rapid 
development of the pandemic in terms of physical spread and local case numbers has provided 
additional data, which enabled further testing of the reliability of the engineering model proposed in the 
first revision of the manuscript (October 2020). Certainly, such an exercise could be repeated multiple 
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times as new data become available from different locations around the World, but this is not the goal 
of our approach. Since the first revision of the manuscript in October 2020, the introduction of vaccines 
has contributed to bringing under control the trajectory of the Covid-19 virus26, 27, 28, 29 but the emergence 
of new variants and mutations30, 31, 32 , most notably in India but also elsewhere, reminds us of possible 
challenges for vaccines and immunotherapies alike.    

Covid-19 trajectory data, used to derive and to validate the model, was sourced from WHO, via 
https://ourworldindata.org/coronavirus-source-data,33 which provides current daily new case and 
mortality figures for most countries. Data as of April 2nd were used for the analysis presented in the first 
version of this manuscript, with a review of trends being undertaken on September 21st, 2020. It should 
be noted that the data chosen for our analysis reflect situations with relatively high population density. 

 

2. Methodology 

The differential model employed was constructed as follows, based on a population of fixed size (Po), 
in which three groups of Individuals were defined: 

1. X= uninfected Individuals; 
2. Y= infected Individuals; 
3. REC = Individuals not able to pass on infection by virtue of recovery, or fatality. 

Defining 

k1 = infection growth rate constant, which will itself be a function of the frequency of daily 
person-to-person contact (assumed random) and of a yet unknown efficacy of transfer; 

and  

k2 = the rate constant for the recovery /mortality of the infected population (Y). 

The following 1st order differential equations may be defined: 

!"($)
!$

= −𝑘&𝑋(𝑡)𝑌(𝑡)          [1] 

!'($)
!$

= 𝑘&𝑋(𝑡)𝑌(𝑡) − 𝑘(𝑌(𝑡)         [2] 

𝑅𝐸𝐶(𝑡) = 𝑃𝑜 − 𝑋(𝑡) − 𝑌(𝑡)         [3] 

The above non-linear equations [1-3] may be solved numerically, for example using a Runge-Kutta-
Simpson technique,34 with the initial conditions being X (0) =Po, Y (0) =0, REC (0) =0. 

It should be emphasised this model only partitions the population into 3 groups, with no spatial 
differentiation, nor distinction among age groups; the geographical position of population elements is 
not considered, and the population is considered fixed. This is consistent with the spirit on an 
Engineering model, in which the combined effects of these differences would result in different values 
for the few parameters used to apply the model to a given case study (i.e., fitting parameters).  

It could be useful to provide some semi-quantitative guidance to relate the parameters in Eqs. [1-3] to 
those of some advanced models recently reported in the literature.16 Explicitly, in our model the 
parameter k1 is the infection growth rate constant, also indicated as intrinsic growth rate, whose units 
are persons-1 time-1; this parameter may be considered as a per capita effective contact rate. Hethcote 
uses the parameter β to represent the contact rate, expressed in the units of (time-1).16 We note that 
the following relation relates k1 and b as: 

β = k1 N            [4] 
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In Eq. [4], N represents the total population (N=X+Y+REC=Po), which is considered fixed in our 
model. 

Further, in our model, the parameter k2 is the rate constant for recovery/mortality (time-1); to connect 
with the approach described by Hethcote, we note that k2 is related to the average infection time, 
sometimes indicated by λ (expressed in the units of time), via the relation:  

k2 = 1/λ            [5] 

In the statistical models used to describe the Covid-19 trajectory, extensive reference has been made to 
the basic reproduction number R0, which, in the review of mathematical modelling19,is defined as the 
average number of infections passed on by an infected individual; it is a dimensionless ratio and is 
related to the parameters discussed in our model (Eqs. [1-3]), via: 

R0 = βλ = k1N/k2             [6] 

The relations shown by Eqs. [4-6] provide a key to translate the results obtained by the Engineering 
model developed here in terms of data presented in the literature by other modelling approaches. This 
correspondence suggests that, even though the model developed here is a minimal one, it could be 
compared against the predictions obtained using more complicated approaches.  

The development of the 3 groups of Individuals (X, Y and REC) with time as predicted by our model 
is shown in Figure 1 in both linear and logarithmic scaling representations.  In Figure 1, the dotted line 
indicates an exponential growth of the infected population, which is fitted to the early part of the 
correspondent curve (i.e., Y(t)). Although a very basic model, the character of the curves is consistent 
with actual infection transfer rates as well as with other models presented in the literature.1,19,Error! 

Bookmark not defined. Fitting is not shown here because abundant analysis is reported on the news as well as 
on specialist literature.16,17,18 the most significant feature evident from our engineering representation of 
the infected population Y curve is its eventual departure from exponential growth, evidenced by the 
change in colour in the Y (t) curve in Figure 1, as the trajectory of the disease continues. This departure 
evidences the possibility of reaching ‘the peak’ in the infection trajectory and eventually reaching ‘herd 
immunity’. We acknowledge that the acceptance of herd immunity as an outcome of a viral trajectory 
requires that the majority of the population (perhaps 80% as suggested by some analysis) experiences 
infection and those that survive and secure immunity act to terminate future infective growth chains. 
This “do nothing” approach ultimately seeks to allow the infection trajectory to take its course, but it 
can come at enormous cost, potentially borne inequitably on those most susceptible. It should however 
be recognised that in some communities (notably in Sweden), a deliberate choice was made to not 
impose restrictions on individual freedoms, potentially with the goal of achieving such ‘herd immunity’. 
Time will tell which approach has been able to curtail the pandemic without allowing for too much 
unintentional negative impact to be delivered. 

In the Engineering model presented here, the departure from exponential growth in the number of 
infected Individuals is due to larger number of contacts between infected Individuals as opposed to 
contacts between infected and uninfected ones, recovery or death of the infected Individuals (described 
by the constant k2), and reduced total population, all eventualities which effectively would eventually 
terminate the growth chain. 

Analysing the results shown in Figure 1, it may be seen that prior to Y reaching 2% of Po (at time = 
0.4157) the correspondence to exponential growth approximation is very good, with Y model / Y 
exponential = 1.0009. Given this good agreement, it is possible to render the model a-dimensional by 
expressing the Y(t) curve as a deviation from the correspondent exponential growth model Yexponential 
(t), under the constraint of limiting the analysis to Y < 2% of Po. Using the a-dimensional model it is 
then possible to draw generally applicable conclusions independently on the actual values of Po, k1 and 
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k2. The time units have not been defined in this case, to emphasize that the analysis of the system 
behaviour is independent of the time unit and rate constant units. 

The significance of the above observation is that in examining WHO data, where the infected population 
(Y) is a very small proportion of the total (or local) population Po, for unchanging rate constants k1 and 
k2 a simple exponential growth in Y should be observed. From our Engineering model: 

!'($)
!$

= 𝑘&𝑋(𝑡)𝑌(𝑡) − 𝑘(𝑌(𝑡)         [2] 

Because X ~ Po in our approximation of Y < 2% of Po, 

𝑘),+,+$+-. = 𝑘&𝑃𝑜          [7] 

!'($)
!$

= .𝑘),+,+$+-. − 𝑘(/𝑌(𝑡)         [8] 

Eq. [8] can be solved to yield 

𝑌(𝑡) = 𝑒𝑥𝑝 3.𝑘),+,+$+-. − 𝑘(/𝑡4         [9] 

It is in fact possible to apply Eq. [9] to WHO data, specifically, for different countries and regions, until 
the onset of isolation/lockdown initiatives, which have the goal of slowing down, and eventually 
reversing the growth rate. In other words, Eq. [9] represents an un-moderated exponential growth in the 
number of infected Individuals. 

 

 

 

Figure 1: Differential model to describe the propagation of a virus through a total population (Po) which is 
initially completed uninfected (X, blue line), and, as time progresses, becomes infected (Y, orange line) and then 
either recovers or dies (REC, grey line). The yellow dashed line is an exponential growth model fitted to the 
early growth stages (yellow symbols) of the infected population Y. The left panel the model is presented in 
linear representation, while in the right panel the logarithmic representation is used. The vertical axes ‘cases’ 
represent percentage values. Parameters values are k1=0.02, k2= 0.3, and P0= 1%. 
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3. Modelling the effect of isolation/lockdown initiatives 

One timely question in relation to governmental initiatives designed to mitigate the spread of a virus, is 
quantifying the merits (and consequences) of strong and weak compliance to governmental health 
directives (i.e., social isolation and lockdown initiatives). 

The effect of these initiatives with respect to the above engineering model is expected to introduce a 
stepwise down shift in the exponential growth constant for the disease, i.e., k3 in Eq. [9]. This effect 
was modelled here by applying various stepdown factors (Kstep-down) to the growth constant k3 at the 
time when 1% of the total population, Po, was infected. In other words, at t> t intervention, we set: 

k3,intervention = k3, initial x (1-Kstep-down)        [10] 

Note that Kstep-down is limited between 0, which reflects an ineffective imposition of governmental 
initiatives, and 1, in which case said initiatives are so effective that no new Individual is infected. In our 
approach, the rate of recovery/mortality from the disease, k2, is considered unchanged.  

Modelling Y(t) under various scenarios for a given k3 yields evidence that two behaviours emerge, 
depending on whether Kstep-down is larger or smaller than a critical value. In the former case, the number 
of infected Individuals declines and over time control over disease prevails. When Kstep-down is lower 
than the critical value, which corresponds to a lower degree of populace compliance with governmental 
health initiatives or ineffective governmental initiatives, Y(t) resumes its exponential growth and 
control over disease propagation is lost. In Figure 2, the two behaviours are shown; control is achieved 
(blue) for Kstep-down = 0.94, and not achieved (orange) for Kstep-down = 0.90. This analysis yields Kstep-

down,critical = 0.92. It is instructive to analyse the number of new infected cases per day as predicted by 
our model when Kstep-down = 0.90. These results are shown in the right panel of Figure 2. It can be seen 
that while the number of new infected Individuals as a function of time (e.g., per day) initially decreases, 
an insufficient compliance with the governmental directives (or ineffective governmental initiatives – 
note that our model cannot distinguish between the two scenarios) eventually leads to growth in the 
number of newly infected Individuals. 

For the Engineering model to be helpful, one might ask how it is possible to determine Kstep-down,critical 
depending on the initial population size, Po, and the infection growth rate, k1. As shown in Eq. [7], k3 
is the product of these two values. Modelling reveals a simple relation between Kstep-down,critical and k3: 

(1 − 𝐾/$012!34,,56+$+5-.) × 𝑘) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡       [11] 

The relation represented by Eq. [11] holds independently of the point in time at which the 
isolation/lockdown initiatives are applied, although for the purposes of modelling, it is considered that 
the initiatives are applied during the early unmoderated exponential growth part of the curve, before 
significant proportion of the population is infected (i.e., Y < 10 % Po). It can be seen from Eq. [11] that 
the smaller k3 is, the larger Kstep-down,critical must be to achieve control over the spread of the virus. 
Because, as shown in Eq. [7], as the number of uninfected Individuals X decrease, k3 decreases, the 
engineering model predicts that the longer it is waited to impose isolation / lockdown initiatives after 
the initial appearance of the virus, the higher must Kstep-down,critical be to achieve the desired effects. A 
longer delay in implementing isolation / lockdown strategies will also increase the number of infected 
Individuals. 
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Figure 2. Left panel: Changes in the number of infected Individuals after isolation/lockdown initiatives are 
introduced. Two types of behaviour are observed, depending on the level of populace compliance with the 

guidelines. When compliance is high, the infected population decreases (blue curve); when compliance is not 
sufficiently high (orange), the exponential growth in the number of infected Individuals continues at a reduced 
growth rate. Right panel: The number of new infected Individuals is plotted as a function of time for the case 

shown in orange in the top panel. Cases as percentage figures. Time units are not defined. 

 

The consequences of applying different Kstep-down values may be modelled to assess the time frame of 
recovery. Such time frame can be quantified by the correspondent recovery rate constant extracted from 
fitting to exponential decay functions the blue portion of curves such as those in Figure 2. Sample results 
are tabulated in Table 1, in which only Kstep-down values above Kstep-down,critical were considered. As smaller 
recovery constants are consistent with a very much slower rate of decline in the population of infected 
Individuals, thus defining a longer period of imposed intervention, this simple analysis clearly suggests 
that minimum discomfort, including economic cost, is achieved by application of the most severe 
intervention possible, to recover control in the shortest time frame. 

To quantify whether the engineering model and its predictions are reliable, one should fit the decaying 
functions to available datasets. 

 

Table 1. Recovery rate constants obtained by fitting the decay in the number of infected Individuals (e.g., 
Figure 2) with an exponential function. The rate constants change as the Kstep-down value increases above a 

critical value, as shown in the datasets below. 

k step-down  k recovery 
0.990 1.715 

0.985 1.574 

0.980 1.434 
0.975 1.296 

0.970 1.159 

0.965 1.025 

0.960 0.889 
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4. Examples of Intervention: China, South Korea and Singapore 

The WHO data base was examined because it provides up to date time sequences of new infective cases, 
total infections and deaths, broken into nations. The original choice of a model dealing with infection 
levels rather than mortality figures was deliberate as the infective levels model is much simpler than 
one attempting to predict disease outcomes given the acknowledged correlation of age on outcome and 
the additional effect of the quality of available health care. 

To assess the reliability of the Engineering model presented here, China, South Korea and Singapore 
were chosen as examples of intervention based on several criteria, including:  

1. Early encounter with disease; proximity to the origin of the disease meant that all 3 nations 
experienced growth in effective numbers early, with the result that the consequences of 
intervention were well defined. Many other nations which had a delayed encounter with the 
Covid-19 pandemic are still experiencing unmoderated exponential growth, and thus provide 
no evidence to assessing the consequences of intervention. 

2. Substantial cohort numbers; in association with point 1, the examination of large national 
cohorts of infection will act to reduce the noise in the time sequence and allow a better 
assessment of the correspondence between model and actual data. 

3. Cultural similarity; the exponential growth constant defined for the disease is determined by 
the frequency and efficacy of transfer by immediate (person-person) or secondary (person-
object/airborne-person) contact. It is appreciated that this is strongly influenced by cultural 
norms of social contact.  Similarly, the effectiveness of disease control measures, such as social 
distancing, increased sanitization and enforced lockdowns will be defined by the cultural norms 
of the societies concerned. As such, choosing 3 nations which are acknowledged as culturally 
similar provides a common basis to support valid comparison. The use of Hofstede’s index of 
cultural similarity is employed to this end, with the 3 nations concerned being defined as 
culturally similar.35,36 

For the cases of South Korea and China37, 38, 39,the number of new infected Individuals per day was 
plotted vs. total number of infected Individuals. The relationship is of the form: 

𝑍(𝑡) = 𝑌(𝑡) × .𝑒𝑥𝑝.(𝑘) − 𝑘() × ∆𝑡/ − 1/       [12] 

In Eq. [12], Z(t) is the number of new infected Individuals per day, Y(t) is the total number of infected 
Individuals, and Δt is the time interval between data points, usually a day. The data are presented over 
several orders of magnitude in a log-log plot, which shows the expected linear relationship typical of 
unmoderated exponential growth. Deviation from this linear relationship at low levels of infection is 
evidence of the control of the disease through effective governmental initiatives and public adherence 
to social distancing and lockdowns guidelines, which have reduced the growth constant. In some cases, 
changes in behaviour can be the natural response to the perceived risk of infection, and not necessarily 
due to government intervention. 

Comparison of the salient features of the 2 curves (un-moderated growth and moderated growth) may 
be achieved through quantification of two dimensionless ratios, which may be used to compare the 2 
countries. The two ratios are A/B and C/D, where the letters have the following meanings: 

• A represents the extrapolated number of cases per day which would have been expected from 
the exponential growth at the case number asymptote; 

• B is the maximum encountered cases per day; 
• C is the number of cases at the time of maximum number of new cases per day; 
• D is the disease propagation asymptote, representing the total number of infected Individuals 

at the conclusion of the outbreak, when local control has been achieved. 
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The data reported by WHO for South Korea and China, plotted in the formalism of Eq. [12], are plotted 
in Figure 3. The points A, B, C and D are extracted from the graphs for these two case studies. 

 

Figure 3: New cases/day versus total cases for South Korea with initial unmoderated exponential growth in 
orange. In blue we highlight the growth rate after the isolation / lockdown initiatives were implemented. In the 
top panel we report analysis for South Korea, with the 23rd February – the date of the first government self-
isolation – isolated. Further initiatives were undertaken on the 14th and the 18th February, as indicated. In the 
middle panel we report the analysis of data from China. In the bottom panel we present model results in which 
Kstep-down varies linearly over time, as described by Eq. [12]. The plot clearly shows that the number of infected 
Individuals per day decreases as Kstep-down increases. 
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5. Extension of the Engineering model 

In order to model the curves in Figure 3, a varying Kstep-down parameter was applied, rather than a constant 
value as was the case in Eq. [10], via: 

𝐾/$012!34, = 1 − 𝑐𝑜𝑛𝑠𝑡 × 𝑡,         [13] 

Eq. [13] reflects the fact that compliance with social distancing and lockdown directives took time to 
take effect and thus Kstep-down decreases with time to some final value. Fitting Eq. [13] to the data via the 
model detailed earlier yields the graphical results plotted in the bottom panel of Figure 3. 

The results show the progression of the new cases versus total cases for Kstep-down transitioning linearly 
(n in Eq. [13] equals 1) with time from K=1 down to K= 0.083. Only when Kstep-down has reached values 
very close to 1 is control over the virus trajectory achieved. 

If the time units in the simulation results of Figure 3 are scaled to match the South Korean dataset, the 
transitioning period required to achieve control on the spread of the disease corresponds to 5.8 days. It 
is encouraging to note that such time frame corresponds to actual WHO data. 

Investigation of the effects of the rate constant, and the parameters defining the time variation of the 
step-down constant were explored to achieve the closest correspondence to the modelling results plotted 
for South Korea and China. The results, tabulated in Table 2, indicate that it is possible to scale the 
engineering model to reproduce WHO data.   

 The fit of the South Korean data is more promising than the one on the Chinese data, as shown by the 
data in Table 2. 

 

Table 2: Growth curve analysis salient for South Korea and China datasets. 

Country K growth day-1  A/B C/D Comments 
South Korea  0.6706 6.405- 7.205 0.5606-0.5706  
China  0.3364 8.175-8.3009 0.2958  
Model 0.6706 3.9277 0.6078 Scaled to Korean data 

 

 

While the presentation of the data as shown in Figure 3 is useful in identifying the departure from the 
initial exponential growth, the presentation of the data in linear form enables a better comparison of 
WHO data to the model. For such purposes, the data are normalised to the maximum number of new 
cases, which also enables the comparison among different datasets. Such comparison is shown in Figure 
4, where the favourable alignment of the different datasets is evident when one discards the peak in new 
cases reported in the dataset from China after the first maximum. The spike after the peak in Chinese 
data is interpreted as an influx of identified cases due to delayed identification. 
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Figure 4. Normalized new cases/unit time versus normalized total cases for South Korean (orange symbols), 
Chinese (blue symbols) and model (solid black line) data, with normalized new cases axis scaled to emphasize 

main body of data and good correspondence between South Korean, And Chinese results with model. 

While in both China and South Korea the analysis of Figure 4 suggests that the spread of the virus has 
been limited and the situation seems to be under control, it is possible, based on the results shown in 
Figure 2 (orange data), that nations achieve short-term control, but then to lose it due to a decline in 
compliance, or to a premature lift in the isolation / lockdown initiatives. Recent data from Singapore 
shows evidence of a flattening of the growth rate and new cases per day falling temporarily to zero, 
before growth is resumed. The WHO data from Singapore are analysed via our engineering model in 
Figure 5. Indeed, the increasing slope of the log total cases versus time graph for Singapore after the 
loss of control shows an accelerating growth rate consistent with a declining Kstep-down, consistent with 
increasing noncompliance to social distancing and health initiatives. 

 

Figure 5. Total cases (blue symbols) and new cases (yellow symbols) per day for Singapore showing evidence 
of control being first achieved, and then lost. Symbols are WHO data, lines are results from the Engineering 

model. 
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6. Recent Developments since the First Derivation of the Engineering Model  

Since the presentation of this work in April 2020, during the early part of the Covid-19 pandemic, there 
have been significant developments. In particular, the summer 2020 months gave the impression that 
the virus trajectory was for the most par under control across several European countries, until the 
number of infections started to rise again in many countries, leading to a ‘second wave’ across Europe. 
The re-examination of Covid-19 data in September 2020 presents the opportunity to examine the 
outcome of governmental initiatives established in an effort to control the virus trajectory, and to 
quantify the concerns presented in our original model derivation. 

The recent experience of South Korea, whose data are presented in Figure 6, illustrates that although a 
second wave was experienced, it resulted in a lower peak cases/day values compared to the first wave, 
and recent data suggest that the viral trajectory is again being managed successfully in that Country, as 
shown by declining new daily case numbers. The data from China, shown in Figure 7, show an 
experience very similar to that just described for South Korea, with second waves being encountered, 
but managed successfully. One notable feature of the data shown in Figure 7 is the slower decline in 
daily cases during the waves of infection after the first. This could be consistent with lock-down fatigue 
and a reduced degree of adherence to social control measures.40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. New cases per day versus total cases for South Korea up to 21/09/2020, showing the 
continued development of the Covid-19 pandemic since the data presented in Figure 3. The second 
infection wave, which is now being managed is evident in the middle panel, the figure shows total 

cases versus date, indicating that the initial period of control was being lost; recent progress in 
managing the viral trajectory is evident as the declining slope of the graph. In the lower panel, the 
figure shows the new cases per day versus date, which evidences first and second Covid-19 waves. 
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Figure 7. Same as Figure 6, using WHO data for China up 21/09/2020. The second infection wave, as 
well as several subsequent (weaker) infection waves have occurred, but they have all been managed. 
The lower panel shows at least 3 subsequent infective waves, of an order of magnitude less severity 

than the original one. Although all waves have been managed, it is interesting to note the longer 
recovery times experienced for subsequent infection waves, which would be consistent with lock-

down fatigue and less diligent adherence to control directives. 
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Data for Covid-19 infections in the UK up to September 2020 allow us to test whether the Engineering model 
presented here is able to reproduce realistic features such as the control of a first wave via isolation initiatives, 
and the occurrence of a second wave when such initiatives are relaxed. For this analysis, data explicit for the UK 
were obtained from WHO. The data are presented here as new cases per day normalised per million people. The 
data were acquired from the start date 26/02/2020, chosen as the date at which new cases per day commenced 
being consistently greater than zero, and growing. The growth constant k3 (see Eq. [7]) was fitted to the initial 
growth rate of Covid-19 cases during the first wave of viral infection trajectory, prior to lockdown. The parameter 
k2 (see Eq. [2]), was chosen as 0.19 day-1, consistent with recent measurements of the infectious periods. 41, 42,43 

Significant landmark dates in the Covid-19 trajectory in the UK are: 16/03/2020 – commencement of lockdown 
(day 20 in our analysis); 20/04/2020 – median date of the peak cases per day plateau, defined as the interval where 
5000 + new cases per day was encountered (day 54 in our analysis); 15/07/2020 – commencement of the UK 
summer school holidays (day 141 in our analysis). 

Utilizing these three dates, we modelled the virus trajectory via applying (e.g., see Eq. 10) a linear change in the 
parameter Kstep-down, which is due to the isolation measures, from no restriction measures (Kstep-down =0) on day 20 
(commencement of lockdown) to a stabilized Kstep-down = 0.5075 value on day 54 (peak of infections), which 
represents a relatively good populace adherence to the isolation measures. The latter figure was maintained 
constant until day 141, where a progressive (linear) return to near-normal behaviour was imposed in the model, 
reaching Kstep-down = 0.159 by day 181 of the data series. This date corresponds closely to the end of the UK summer 
vacation period. As may be seen in Figure 8, the use of our model, with constants sourced from literature reported 
measurements, and key dates relevant to the propagation of the infection, corresponds favourably to the reported 
new cases per day over time for the initial infection wave as well as the initial period of the second wave of Covid-
19 infections. Examination of the UK data indicates a break-away value of Kstep-down = 0.3955-0.4130, the 
temporary achievement of control being consistent with a figure greater than this, which then relaxed back to a 
value below this and prompted to resumption of increasing new cases/day. As such, the Engineering model 
equipped with known rate constants sourced from observed data, is consistent with the right panel of Figure 2, 
detailing control gained and lost. 

 

 

Figure 8. Model predictions (orange line) versus data (blue symbol) for the UK’s first and second infection 
waves (spring-summer 2020). 
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7. Discussion of Results and Conclusions 

The Engineering model presented here, utilizing a linear decline of Kstep-down over time to reflect 
increasing compliance to the application of social distancing and lockdown initiatives, achieves good 
semi-quantitative agreement with the South Korean and Chinese data for the Covid-19 trajectory. A 
late spike in new cases had been reported in China during the first wave of the pandemic in that region, 
which is not consistent with the engineering model’s predictions. However, this spike is ascribed to 
changes in data acquisition and reporting. 

The most significant conclusion is that Kstep-down needs to achieve ~ 0.92 to mitigate the spread of a virus 
such as COVID-19; that is to say to the frequency of social interactions needs to be reduced by more 
than 10-fold compared to the conditions our societies are familiar with. This value is likely to change 
for regions that are less densely populated than those considered in this analysis. 

In the case of South Korea, the time from reaching 100 confirmed cases to the point of maximum case 
numbers/day (909) was only 9 days during the first wave of the Covid-19 trajectory, after which a clear 
decline in daily case numbers was seen. In China, during the first wave of the Covid-19 trajectory, 18 
days were required to reach the daily new cases maximum of 3872 infected Individuals, after which a 
clear decline is noted. Examination of the model, and of its application to the Singapore case study, 
indicated that the application of insufficient social intervention will yield the appearance of achieving 
control, with a reduced number of new cases per day for a period, after which new case numbers will 
increase and grow. The WHO data related to the first wave of Covid-19 infections in Singapore provides 
evidence of control achieved and then lost, which is interpreted as consistent with a failure to adhere to 
health. Subsequent data show that the viral spread was maintained under relative control. 

Examination of the WHO data relative to the first infection wave in the UK with the use of literature 
provided realistic values for the model constants, and changes to the effectiveness of infective transfer 
as defined by key dates, enabled close modelling of the rise and fall off of infections in the first wave 
as well as the initial period of the second wave. Of note, the analysis of the Engineering model relevant 
for the UK situation suggests that the viral trajectory can be maintained under control for a relatively 
modest value of the Kstep-down constant just above ~ 0.5. Despite this relatively low level of compliance 
to the isolation / lockdown initiatives, recent WHO data show that the Covid-19 virus is again spreading 
quickly throughout the UK. The proximity of the commencement of the second wave of infections to 
the beginning of the UK summer vacation period is considered as significant in compromising the 
earlier constraints on infectious transfer achieved during lockdown.  

The growth characteristics of the virus trajectory (as defined by the model constants k1 and k2) are 
expected to be very sensitive to the environment considered for the study. The rapid growth encountered 
with the early stages of the Covid-19 pandemic in China, e.g., are consistent with a high-density urban 
population whose behaviours had yet to be modified by personal choice or government directives. As 
such, compared to the initial social behaviours, high degrees of lockdown were indicated as critical to 
managing the spread (which is reflected by high values of Kstep-down). The somewhat slower growth in 
environments of lower population density and/or where some levels of self-directed social distancing 
are already in common practice is likely to require lower compliance with isolation strategies (i.e., lower 
Kstep-down) to achieve control. 

Our modelling of the first two waves of the Covid-19 trajectory strengthens the conclusions of the 
earlier work. From the point of view of the goals of this study, it is notable that a relatively simple 
Engineering model is able to capture the trajectory of the virus, using very few parameters that can be 
easily fitted against available data. 
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Analysis of the data and of the model results supports the following conclusions:  

• At low levels of infective presence, the number of infected Individuals may be modelled as 
complying to an exponential approximation, and any departures from this are evidence of 
changes to the growth rate constants in the propagation of the disease. 

• The application of governmental intervention in social distancing and lockdowns can mitigate 
and control the virus trajectory, but only if a significant decrease in usual social interactions (as 
defined by high Kstep-down values in the model) is achieved. 

• For insufficient Kstep-down values, control is not achieved. 
• When the compliance with the governmental regulations is sufficiently high, there is a 

correspondence between the exponential decline in case numbers and the severity of the 
governmental initiatives. A very much shorter recovery time, lower numbers of infected 
Individuals, and smaller economic costs are achieved by applying the most severe isolation 
initiatives, which will need to be applied for a shorter time. 

• A reduction in new cases per day does not indicate that control is achieved and can be 
misleading because a relaxation of compliance to health initiatives will cause a resumption of 
exponential growth. 

• This simple analysis supports the argument that a severe but short-term lockdown will achieve 
the fastest reduction in the spread of the virus.   

The conclusions just listed were provided on April 13th, 2020. Since then, encouraging reports have 
appeared in the news, suggesting that the lockdown strategies in several countries are yielding the 
expected positive effects.41 In some countries such as New Zealand the spread of Covid-19 was under 
control as early as April 28th (despite subsequent small bursts in infections). In response, some 
governments initiated easing of the isolation/lockdown initiatives during the summer months. Our 
simple model suggested that it might have been premature to lift isolation/lockdown initiatives. 

A review of the viral trajectory conducted based on data retrieved on 21st September 2020 confirmed 
the development of second infective waves in a number of countries, including all those examined here. 
Our original conclusions have been vindicated, reinforcing the indication that social intervention robust 
enough to achieve control are needed, otherwise a less than desirable reduction in R0, the basic 
reproduction number, would be achieved, dragging out the period needed to achieve control, and the 
associated costs.10 Consistent with the experience of the initial infection, the data confirming second 
waves show more severe case numbers in countries where cultural norms valued individual expression 
over collective security. Our analysis seems to be consistent with the complexity of the situation, as 
observed by other studies emerged in the current literature.4,12,22,23,25 An informed extrapolation of the 
implications from our simple Engineering model suggests that in order to control the trajectory of the 
Covid-19 pandemic several subsequent short-to-medium periods of isolation / lockdown initiatives will 
be inevitable until one or more of the following scenarios will occur: (a) a cure has been developed and 
has become accessible to the population at large; (b) a vaccine has been developed, tested, and 
distributed to large portions of the population; (c) a sufficiently large portion of the population has 
developed resistance to the Covid-19 virus; or (d) the virus itself has become less aggressive. 

It should be recognized that the SIR model presented here is a simple Engineering one, which does not 
take into account the physical mechanisms by which Covid-19, or any other virus, spreads. It should 
also be recognised that the model is used here to fit available data, which are known to depend on the 
wide availability of testing. No effort has been made to extrapolate from such available data. The model 
also does not explicitly quantify the economic nor societal implications of isolation/lockdown 
initiatives. It instead implicitly assumes a correlation between the number of infected individuals and 
the negative effects due to Covid-19. 
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The Engineering model presented here does not consider the concept of a critical initial cohort of 
infected individuals, the potential for growth as defined by the k parameter is the same as for a group 
of any size. It is appreciated that the k factor is strongly defined by the frequency and nature of contact 
between individuals and as such population density and the geographical barriers to infection are 
significant factors in defining the virus trajectory. The model does not consider these influences and 
considers a numerically and physically static population which has a common k factor. 

Similarly, new infective variants had not been encountered at the time of the initial work and as such 
are not considered herein. It is expected that more infective variants of the virus would lead to an 
increase in the infection growth rate constant k1. All other parameters constant, such an eventuality 
would require a higher degree of isolation initiatives to reduce the spread of the virus. As vaccines 
became available after the first revision of the manuscript was submitted in October 2020, their effect 
on the virus trajectory has also not been analysed, although it likely can be described as an additional 
term in the model that describes an increase in the recovered portion of the population. 

Areas of possible future investigation would include the effect of connecting several models to 
investigate the effects of geographical isolation and contact between communities and including the 
effects of correlation between k factors and different social and demographic groups. 
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