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ABSTRACT 

Members of the Larger Benthic Foraminiferal (LBF) family Orbitolinidae occurred from the 

Cretaceous to the Paleogene, however, they were most diverse during the mid-Cretaceous, and 

dominated the agglutinated LBF assemblages described from limestones of that period. 

Various orbitolinid species have been used to zone and date lithologies formed in the shallow, 

warm waters of the Aptian to the Early Cenomanian, and many, sometimes inaccurate, generic 

and sub-generic nomenclatures have been proposed to differentiate the often-subtle 

morphological changes that orbitolinids exhibit over time. Until now, it has not been possible 

to develop an effective global overview of their evolution and environmental development 

because descriptions of specimens from Asia have been relatively rare. Following our recent 

study of over 1800 orbitolinid-rich thin sections of material from 13 outcrops of the Langshan 

Limestone, from the Southern Tibetan Plateau, and from the Barito Basin, South Kalimantan, 

Indonesia, it has been possible to compare the stratigraphic ranges of these orbitolinids with 

previously described Tethyan and American forms, based on the use of a planktonic zonal (PZ) 

scheme, itself tied to the most recent chronostratigraphic scale. This has allowed the 

reconstruction of the phylogenetic and paleogeographic evolution of the orbitolinids from their 

Valanginian origin in the Tethys. Although Tethys remained the paleogeographic focus for the 

orbitolinids, it is inferred here for the first time that a bi-directional paleogeographic migration 

of some orbitolinid genera occurred from Tethys to the Americas and also to the Western 

Pacific region. Our observations and dating confirm that global marine regressions in the 

Aptian were coincident with, and may well have facilitated, these orbitolinid transoceanic 

migrations. Migration stopped however after rising sea-level in the Early Albian appears to 
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have again isolated these provinces from each other. Tectonic forces associated with the 

subduction of the Farallon Plate and further sea-level raises led to the opening of the Western 

Interior Seaway in the North America, which correlates with, and may have been the cause of, 

the Middle Albian (top of PZ Albian 2) extinction of the American orbitolinids. The extinction 

of the orbitolinids revealed that the Western Pacific province was split into two sub-provinces, 

with extinction occurring at the end of the Early Albian (top of PZ Albian 1) in the Northwest 

Pacific sub-province, and at the end of the Albian (top of PZ Albian 4) in the sub-province that 

is today South East Asia (on the margins and west of the Wallace Line). The final virtual 

extinction of the orbitolinids occurred at the end of the Cenomanian in the Tethyan province, 

which coincides with, and may have been caused by, global anoxic oceanic events that correlate 

with a near-peak Mesozoic eustatic sea-level high-stand that led to the overall global collapse 

of the paleotropical reef ecosystem at that time.  
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INTRODUCTION 

The Orbitolinidae are an agglutinated, but now extinct, family of the Larger Benthic 

Foraminifera (LBF). Orbitolinidae were present in the warm, shallow marine waters of the 

Early Cretaceous to the Early Oligocene, however, they were most diverse during the mid-

Cretaceous. During the Early to mid-Cretaceous (Valanginian to Early Cenomanian), there was 

an identifiable increase in the complexity of their morphological structure, which enabled them 

to house within their tests symbiotic algae (BouDagher-Fadel, 2018a), and it is these forms 

which are the subject of this paper. Traditionally, orbitolinids are considered to define two 

major, distinct paleogeographic realms, namely those of the Americas and the Tethys (see 

BouDagher-Fadel, 2018a), but in this study we find forms reported from the Western Pacific 

are distinct from their Tethyan forebears, and so define a third orbitolinid province. 

The symbiotic orbitolinids were reef-forming organisms, and they are found in association with 

other marine forms, including planktonic foraminifera. This coexistence with planktonic forms, 

enables their stratigraphic ranges to be defined very precisely, as they can be tied to the high 

resolution planktonic zonal (PZ) dating scheme of BouDagher-Fadel (2018b; see Fig. 1), which 

itself is tied to the absolute time scale of Gradstein et al. (2012). 

Early to mid-Cretaceous orbitolinids have been described from ancient Tethyan limestones 

from, for example, the Mediterranean (Husinec, 2001),  Southwest England (Carter and Hart, 

1977; Hart et al., 1979; Hart, 1982; Hart and Williams, 1990; Simmons et al., 2000; Simmons 

et al., 1992), Spain (Vilas et al., 1995; Caus et al., 1997), Israel, Lebanon and Syria (Saint-

Marc, 1970), Yemen (Cherchi et al., 1998), Oman (Simmons and Hart, 1987; Simmons, 1994; 

Masse et al., 1998), the United Arab Emirates (Vahrenkamp, 1996), Iran (Mehrnusch, 1973; 

Shakib, 1994; Roozbahani, 2011; Schlagintweit and Wilmsen, 2014; Rahiminejad and 

Hassani), Afghanistan (Schroeder, 1975), and Tibet (Zhang, 1982, 1986; BouDagher-Fadel et 

al., 2017). They are also reported from the Northwest Pacific (Iba et al., 2011), Japan and 

Sakhalin (Yabe and Hanzawa, 1926; Hofker, 1963; Ujiié and Kusukawa 1968; Matsumaru 

1971, 1973; Matsumaru et al. 1976; Salnikov and Tikhomolov 1987; Iba et al., 2005; 

Matsumaru, 2005; Matsumaru and Furusawa 2005, 2007; Iba and Sano 2006; Matsumaru and 

Furusawa 2007), and in Africa, where they are found in Ethiopia (Bosellini et al., 1999), 

Somalia (e.g. Luger et al., 1990; Bosellini, 1992; Cherchi and Schroeder, 1999) and Tanzania 

(Peybernès, 1982).   
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Furthermore, orbitolinids have been reported from the northwestern Atlantic, off the Flemish 

Cap, Newfoundland (Sen Gupta and Grant, 1971; Schroeder and Cherchi, 1979), and have been 

described from the Caribbean and the Americas (Douglass 1960), Mexico (Meza, 1980; 

Pantoja-Alor et al., 1994; Omaña and Alencáster, 2009), and Venezuela (Görög and Arnaud-

Vanneau, 1996).  

During their existence, the structurally complex orbitolinids showed relatively rapid 

phylogenetic evolution, developing many stratigraphically short-ranged species, which when 

combined with the PZ scheme (see Fig. 1) act as a very important and precise index fossil group 

for the shallow-marine environments of the mid-Cretaceous Tethys (Simmons et al., 2000; 

Schroeder et al., 2010; BouDagher-Fadel et al., 2017; BouDagher-Fadel, 2018a). As a result, 

they have been widely adopted as a biostratigraphic tool by industry in the exploration of 

Middle Eastern and other oil and gas fields.  

In this paper, the evolution and paleogeographic development of these symbiotic, 

morphologically complex orbitolinids is inferred from the re-analysis of the published data 

referred to above, and combined with new observations from over 1800 thin sections of 

material from 13 outcrops of the Langshan Limestone of the Southern Tibetan Plateau (see Fig. 

2), the Sangzugang Formation in Southern Lhasa subterrane (see An et al., 2014), the Xiagezi-

II section of the Langshan Formation in southern part of Northern Lhasa subterrane (see Sun 

et al., 2015), the Azhang and Guolong sections from the Langshan Formation in Northern 

Lhasa subterrane (see BouDagher-Fadel et al., 2017), the Jingshughan, Langshan, Xiongba, 

Xiongmei, Baoji, Daya, Gegi, Letie and Zulong sections (Yiwei et al., in preparation), and the 

Jiarong and Laxue sections from the Linzhou Basin (see BouDagher-Fadel et al., 2017). In 

addition, material has been studied from the western flank of the Meratus Mountains, an 

uplifted accretionary collision complex that records suturing of East Java-West Sulawesi to the 

Sundaland margin during the mid-Cretaceous (see Fig. 3). The uplifted complex now forms 

the eastern boundary of the Barito Basin, South Kalimantan, Indonesia (see Witts, 2011). 

By correlating these observations and literature data with our high resolution PZ scheme 

(BouDagher-Fadel, 2018b, Fig. 1), we are able to infer, for the first time, a comprehensive, 

global synthesis of the biostratigraphic, phylogenetic and paleogeographic evolution of these 

orbitolinids. We infer that the earliest morphologically complex orbitolinids evolved in the 

Tethyan from primitive Valanginian forms such as Valdanchella, Paleodictyoconus and 

Campanellula (Fig. 4). More complex forms developed rapidly into different Tethyan 
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phylogenetic lineages (e.g. Figs 4 and 5). It appears that major, global sea-level regressions 

starting in the Early Aptian (PZ Aptian 1, 125.0 Ma) and in the Late Aptian (PZ Aptian 4, 

116.5Ma; see Fig. 6), correlate with and probably facilitated bi-directional transoceanic 

migration of orbitolinids. One migration was from the Tethyan to the previously recognised 

American province, but a second migration was from Tethys to the newly defined Western 

Pacific province (see Fig 7). These migrations stopped after rising sea-level during the Early 

Albian (PZ Albian 1) appears to have isolated the provinces one from another.  

The isolated orbitolinids of the Northwest sub-province of the Western Pacific (present day 

Japan) became extent at end of the Early Albian (top of PZ Albian 1), while those in the isolated 

American province became extinct at the end of PZ Albian 2 (106.7Ma). All forms in the sub-

province that is today South East Asia (on the margins and to the west of the Wallace Line) 

went extinct at the end of the Albian (top of PZ Albian 4). The “hotspot” for orbitolinid 

evolution, however, remained in Tethys, where environmental conditions continued to 

contribute to their success until the end of the Cenomanian, when virtually all symbiotic, 

morphologically complex orbitolinids became extinct, as indeed did many of the other 

agglutinated LBF that dated from the Early Cretaceous and Jurassic (see BouDagher-Fadel, 

2018a). These extinctions coincided with an anoxic oceanic event (Bambach, 2006), and 

correlate with a near-peak Mesozoic eustatic sea-level high-stand (see Fig. 6, and Miller et al, 

2005).  

MORPHOLOGICAL CHARACTERISTICS OF ORBITOLINIDS  

The orbitolinids are members of the order Textulariida, which have agglutinated tests that are 

made of foreign particles bound by organic cement. They are characterized by having conical 

tests, subdivided into numerous chambers, and are usually a few millimetres in height and 

diameter (although as noted, some forms attained diameters of 5 cm or more). The numerous 

uniserial discoidal chambers are partially subdivided by radial or transverse partitions, or 

pillars. They have cribrate, areal apertures (see Fig. 8).  

The Cretaceous morphologically complex orbitolinids are divided into the dictyoconines and 

orbitolinines, and range from the Valanginian to the Cenomanian. They are divided into the 

following five morphological groups, (see BouDagher-Fadel, 2018a): 

(i) Orbitolinids with no complex central zones (e.g., Campanellula, PZ Valanginian 

1). They lack thick radial partitions and pillars in the central zone. 
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(ii) Orbitolinids with a complex central zone and radial partitions thickening away from 

the periphery and breaking up into pillars in the central zone, first appeared in the 

Late Valanginian with developed peripheral tiered rectangular chamberlets. They 

evolved into the dictyoconines (e.g, Paleodictyoconus, PZ Valanginian 2, Fig. 4; 

Paracoskinolina, PZ Barremian 1-Albian 4), or into the orbitolinines (e.g., 

Urgonina, PZ Barremian 1, Fig. 4) from forms with the outer parts of their chambers 

lacking partitions but with interseptal pillars connecting the adjacent septa. 

(iii) Orbitolinids with radial partitions thickening away from the periphery to 

anastomose centrally around the aperture and form a reticulate zone in transverse 

section, also first appeared in the Late Valanginian (e.g., Valdanchella, PZ 

Valanginian 2). The peripheral zones of their chambers are subdivided into 

rectangular chamberlets by fine radial partitions (Fig. 4). 

(iv) Orbitolinids with radial partitions that became zigzag, thickening and fusing 

centrally, giving a stellate appearance in transverse section, first appeared in the 

Aptian (e.g., Simplorbitolina, PZ Aptian 1). Their tests may have tiered peripheral 

chamberlets (e.g. Dictyoconella, PZ Cenomanian 3, Fig. 4). 

(v) Orbitolinids with radial partitions thickening, with triangular cross-sections away 

from the periphery and anastomosing in the central area, first appeared in the 

Barremian (e.g. Eopalorbitolina, PZ Barremian 1, Fig. 5) and evolved rapidly in 

the mid-Cretaceous. The test of these orbitolinids is defined by the shape of the 

embryonic apparatus, and by the size and shape of the chamber passages that can 

be seen in tangential sections. The earliest formed chambers of the megalospheric 

generation can form a complex embryonic apparatus, which can be divided into a 

protoconch, a deuteroconch, a sub-embryonic zone and peri-embryonic chamberlets 

(see Plate 1, figs 2, 5; Fig. 4). In axial section, the embryo is located at the apex of 

the cone, followed by a series of discoidal chamber layers. The embryonic apparatus 

evolved from a simple apparatus, consisting of a large globular fused protoconch 

and deuteroconch, followed by peri-embryonic chambers as in Palorbitolina, to an 

embryonic apparatus divided into a protoconch and deuteroconch but a not 

completely divided sub-embryonic zone, as in Praeorbitolina. This latter evolved 

in turn into forms in which the deuteroconch and sub-embryonic zone are more or 

less of equal thickness, as in Mesorbitolina (Plate 1, fig. 4). In Conicorbitolina 

(Plate 3, fig. 6) the marginal zone became extensively divided by vertical and 

horizontal partitions, while in Orbitolina the deuteroconch is highly subdivided and 
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of much greater thickness than the sub-embryonic zone (see Figs 4, 5; Schroeder, 

1975; Hottinger, 1978; Simmons et al., 2000; BouDagher-Fadel, 2008; Schroeder 

et al., 2010; BouDagher-Fadel et al., 2017).  In transverse section, the chambers are 

seen divided into a marginal zone, with sub-epidermal partitions, and a central zone 

with radial partitions (Plate 1, fig. 1; Figs 8.1-8.2, 9). The chamber passages are 

formed in the radial part of the central zone of each chamber layer (Figs 8.1-8.2, 

9h), where each chamber passage is subdivided by vertical main partitions, which 

are prolongations of the vertical main partitions of the marginal zone (Figs 9a-f, h). 

The radial partitions (Fig. 9f) in advanced orbitolinids (e.g. Mesorbitolina, 

Orbitolina) thicken away from the periphery and anastomose in the central area, 

producing an irregular reticular network (Plate 1, figs 3, 6-8; Figs 9g, i-j; Fig. 10b). 

In cross section, the chamber passages can be triangular (Figs 9c, 10a), rectangular 

(Fig. 10c) or oval, or can show a gradation between shapes (Fig. 9e) (Schroeder, 

1975). In the radial zone of Orbitolina, the stolons are arranged in radial rows 

alternating from one chamber to the next one (see BouDagher-Fadel, 2018a). Their 

alternating position would have obliged the protoplasm to flow in an oblique 

direction (Hottinger, 1978). In the annular radial zone of the conical test (Plate 1, 

figs 1, 3, 7), radial septula subdivide the chambers into radial compartments with 

various thickness and textures (Plate 1, fig. 8; Fig. 9f, h, k-r), narrowing towards 

the centre to fuse into a reticular network (Plate 1, figs 1, 6, 8; Fig. 9g, i, j) which 

minimizes the volume of chamberlet cavities (Plate 1, figs 1, 6-8). 

 

BIOSTRATIGRAPHY, PHYLOGENY AND PALEOGEOGRAPHIC DISTRIBUTION 

OF THE ORBITOLINIDS 

The orbitolinids are very useful biostratigraphic markers in early to mid-Cretaceous Tethyan 

carbonate platforms (Henson, 1948; Schroeder, 1975; BouDagher-Fadel et al., 2017). They 

have short ranges and are, with practice, easily identified in thin sections (e.g. see Plates 2 and 

3). Orbitolinids show provincialism unlike some LBFs of the period (e.g. the miliolides). 

Traditionally, they are considered to define two major, distinct paleogeographic realms, namely 

those of the Americas and the Tethys (see BouDagher-Fadel, 2018a).  

Many forms from the morphological Group (i) described above evolved gradually to more 

advanced forms from Groups (ii) to Groups (vi). Notable and characteristic lineages include: 
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 Campanellula – Paracoskinolina – Coskinolinoides – Dictyoconus (PZ Valanginian 1-

Cenomanian 3; all forms in this group became extinct in the Cenomanian, except 

Dictyoconus, which persisted to the Oligocene). The evolutionary trend of this Group (i) – 

Group (ii) lineage is characterized by an increase in test diameter and the development of 

increasingly complex radial partitions radial partitions thickening away from the periphery, 

that break up into pillars in the central zone, forming highly developed and complex layers 

of chamberlets.  

 Valdanchella – Paleodictyoconus – Montseciella – Rectodictyoconus – Simplorbitolina – 

Neorbitolinopsis (PZ Valanginian 1-Cenomanian 1). The evolutionary trend of this Group 

(i) to Group (v) lineage is characterized by the increase in size, a gradual enlargement of 

the whole embryo the development of the megalospheric embryo in a centric or near centric 

position, and the development of increasingly complex radial partitions, becoming zigzag 

with a stellate appearance in transverse section (as in Simplorbitolina) or thickened and 

fused centrally forming highly developed and complex layers of chamberlets (as in 

Neorbitolinopsis).  

 Urgonina – Eopalorbitolina - Palorbitolina – Palorbitolinoides (PZ Barremian 1-Albian 

1). The evolutionary trend of this Group (ii) – Group (v) lineage (see Fig. 5) is related to 

the formation of peripheral, tiered, rectangular chamberlets in two or more series, the shape 

and position of the embryonic apparatus from a bi-chambered embryo in a clear eccentric 

position, with a missing peri-embryonic zone in Eopalorbitolina (see Fig. 5), to the 

development and  the increase in size of the peri-embryonic zone to embrace more and 

more of the embryonic chamber, surrounding the upper half of the nearly centric embryonic 

chamber in E. transiens, and becoming completely annular surrounding the upper part of 

the centric embryonic chamber in Palorbitolina lenticularis (Figs 5, 10). In 

Palorbitolinoides (e.g. P. hedini, Plate 2, fig. 5) the large and flattened embryonic chamber 

is surrounded by a developed inflated peri-embryonic zone.  

 Praeorbitolina – Mesorbitolina – Orbitolina – Conicorbitolina (PZ Aptian 1-Cenomanian 

3). The main evolutionary characters in this Group (v) lineage are the position of the 

embryonic apparatus, which is in an eccentric position in earlier forms (e.g. 

Praeorbitolina), but centrally placed in advanced forms, consisting of the protoconch and 

the deuteroconch (e.g. Mesorbitolina). In Conicorbitolina (PZ Albian 4-Cenomanian 1) the 

large proloculus is divided into a protoconch and deuteroconch, with the marginal zone 

becoming extensively divided by vertical and horizontal partitions (Plate 3, fig. 6; Fig. 5). 
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The main evolutionary characters of this Orbitolina (PZ Albian 3- Cenomanian 3) is the 

increase in size of the apically situated embryonic apparatus, where the deuteroconch 

becomes about three times thicker than the sub- embryonic zone (Figs 5, 9).  

On the basis of this study, and using the linages described above, we are able to establish for 

the first time that there were in fact three distinct paleogeographic provinces for these 

symbiotic, morphologically complex orbitolinids (see Fig. 7); namely the previously defined 

American province (including current day Texas, Venezuela, Mexico), a Tethyan province 

(including Europe and the Flemish Cap off Newfoundland, Arabia, Turkey, Iran, Lebanon, 

Oman, Syria, Qatar, Tibet), and a newly identified Western Pacific province, which is divided 

into two sub-provinces; the sub-province of Northwest Pacific, which include Japan and the 

Philippine island of Cebu, and a sub-province that includes what is today South East Asia (west 

of the Wallace Line).  

In Tethys, morphologically complex orbitolinids and their precursors are common from the 

Valanginian (PZ Valanginian 1) to the Cenomanian (PZ Cenomanian 3), and exhibit several of 

the phylogenetic lineages described above, while in the Americans orbitolinids are only found 

between the Early Aptian (PZ Aptian 1) and Middle Albian (PZ Albian 2), and are 

predominantly represented by the Group (v) genera Palorbitolina and Mesorbitolina. In the 

Western Pacific, unidentified and unconfirmed orbitolinids have been listed in the literature as 

dating from the Late Hauterivian to the Early Aptian (see Iba et al., 2011). These early forms 

are however contested, but the Group (v) Praeorbitolina – Mesorbitolina lineage is definitely 

confirmed from PZ Aptian 1 to PZ Albian 1 in Northwest Pacific sub-province and to PZ 

Albian 4 in South East Asia sub-province.   

From this global pattern, we infer that the original hotspot for the evolution of the complex 

orbitolinids was Tethys, but as will be described below, following migration events in the Early 

Aptian out of Tethys, some lineages of the orbitolinids spread to the other provinces. It seems 

that the migration stopped after the Early Albian, and that the provinces were again isolated. 

There then developed provincial, parallel, but specifically distinct evolutionary trends, until the 

subsequent provincial extinctions in the Americas and the West Pacific (see Fig. 11).  
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The Tethys  

Throughout the Tethyan province orbitolinids of Groups (i-v) evolved many lineages. They 

became morphologically complex and widespread, and are often associated with calcareous 

algae. Their principle Tethyan lineages which evolved from Group (i) include: 

 

 Group (ii) – Group (iv) Valdanchella – Paleodictyoconus – Montseciella – 

Rectodictyoconus – Simplorbitolina – Orbitolinopsis (PZ Valanginian 1-Cenomanian 

1); 

 Group (v): Eopalorbitolina – Palorbitolina – Palorbitolinoides (PZ Barremian 1- 

Albian 1); 

 Group (v): Praeorbitolina – Conicorbitolina (PZ Aptian 1-Cenomanian 1). 

The orbitolinid associations of western Tethys, southern Neo-Tethys margin and of southwest 

Europe are similar to those of the Tibetan carbonate platforms, and they all form a part of the 

Tethyan realm (BouDagher-Fadel et al., 2017). All cosmopolitan orbitolinids appeared in 

Tethys before spreading to other provinces. For example, in Tethys, Palorbitolina lenticularis 

(Plate 2, fig. 1; Fig. 10) first occurred in Late Barremian (PZ Barremian 3, 127 Ma; BouDagher-

Fadel et al., 2017), 2 million years before its first appearance in the American and Western 

Pacific provinces at the beginning of Aptian (PZ Aptian 1, 125.0 Ma). The oldest P. lenticularis 

recorded in what is today the “American” continent was recorded by Schroeder and Cherchi 

(1979) from the Late Barremian of the Flemish Cap, North West Atlantic. From the 

palaeogeography of the time, however, we infer that at this stage the Flemish Cap was the 

extreme extension of the north western Tethyan realm and was isolated from the more southerly 

parts of the American province (see Fig. 7). 

The earliest Mesorbitolina (e.g., Mesorbitolina lotzei), likewise, appeared first in Tethys, in PZ 

Aptian 2. The cosmopolitan M. parva – M. texana first appearing in the Late Aptian (PZ Aptian 

3, 119.5Ma), 3 million years earlier than in the American and Western Pacific provinces where 

their first appearances are recorded in PZ Aptian 4, 116.5Ma (Douglas, 1960; Simmons et al., 

2000; Iba et al., 2011; BouDagher-Fadel et al., 2017). Subsequent to its first appearance, the 

Tethyan Mesorbitolina evolved many phylogenetic lineages, which show the typical evolution 

from having a simple embryonic apparatus to developing a more complicated one. The most 

common Late Aptian – Cenomanian (PZ Aptian 4-Cenomanian 1) lineage being the M. texana 

– M. aperta lineage (see Plate 1, figs 1-3, 6; Plate 2, fig. 4; Fig. 5), where the open deuteroconch 
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in the square embryonic apparatus evolves into a deuteroconch subdivided in the upper part by 

several partitions of different sizes, whereas the lower part exhibits an irregular network of 

partitions (BouDagher-Fadel et al., 2017). No equivalent lineage is found in the other 

provinces, suggesting that by this stage the provinces were again isolated one form another.  

All Tethyan orbitolinids became extinct (with the exception of Dictyoconus) at the end of the 

Cenomanian. 

The Western Pacific 

In the Western Pacific province, orbitolinids limestones, associated mainly with Cretaceous arc 

volcanics, form two sub-provinces. One occurs north along the Eurasian continental margin to 

the Philippines and Japan, and the other is to the south, along a belt near the Early Cretaceous 

margin of Sundaland, in what is today South East Asia (Hofker 1963; Hashimoto et al., 1975).  

In the Northwest Pacific sub-province, reported occurrences of orbitolinids are patchy with 

numerous doubtful identifications, but those with certain identification belong to Group (v). 

Palorbitolina lenticularis is first recorded from the beginning of PZ Aptian 1 (125.0Ma, 2 

million years after its first appearance in Tethys) in the eastern Philippines (Cebu) and Japan 

(Hashimoto et al. 1978; Iba et al., 2011). 

In the South East Asian sub-province, orbitolinids are more common and occur from PZ Aptian 

1 (125.0 Ma) to PZ Albian 4 (100.5 Ma). In West Sarawak and NW Kalimantan, orbitolinid-

rich beds are recorded from the Early Aptian (PZ Aptian 1) of Pedawan and Seberoeang 

Formations (Hashimoto and Matsumaru, 1977). In North-Central Kalimantan orbitolinids are 

documented from the Aptian to Early Albian (PZ Aptian 1 – Albian 1) of the Selangkai 

Formation in the Upper Kapuas River region, (Hashimoto et al, 1975). Other Early Cretaceous 

orbitolinid localities include SE Kalimantan along the Meratus Mountains front East of 

Martapura (Hashimoto and Matsumaru, 1974), in South Sumatra, Ratai Bay, Lampung (Yabe, 

1946), in the Gumai Mountains (Musper, 1937), Central Java (Harloff 1933), and West 

Sulawesi (Brouwer, 1934, White et al., 2017).  

The Western Pacific orbitolinids are mainly of Tethyan origin belonging to Group (v). Aptian 

forms originally described as endemic to the South East Asia sub-province are in fact found to 

be synonyms to the Tethyan forms. As an example, Orbitolina scutum and O. trochus, 

originally named as Patellina scutum and P. trochus are both described from Borneo and were 
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assumed to be of Eocene age by Von Fritsch (1879), but were later re-identified as the Tethyan 

species Palorbitolina lenticularis and Mesorbitolina parva (Hashimota and Matsumaru 1974). 

While P. lenticularis ranges from Late Barremian to Early Aptian in Tethys, it is only recorded 

from the Aptian in the Western Pacific.  

In addition to these forms, we record in this work for the first time the presence of the Late 

Aptian to Early Albian (PZ Aptian 3 to Albian 1) Tethyan species of Palorbitolinoides 

orbiculata (Plate 2, fig. 3; Plate 3, figs 4, 7) in the Early Albian (PZ Albian 1) of the western 

flank of the Meratus Mountains, Barito Basin, Southeast Kalimantan, Indonesia. The Tethyan 

genus Conicorbitolina which evolved from Mesorbitolina in Tethys in Albian 3 and ranges to 

Cenomanian 1 (see Fig. 7) is also recorded here for the first time from the Late Albian (PZ 

Albian 4) of the Barito Basin, Kalimantan, Conicorbitolina sp. (Plate 3, fig. 6). Although the 

shape of the test is similar to the Tethyan C. conica, those of the Southeast Kalimantan have 

variations in the shape and number of periembryonic chambers (see Plate 3, fig. 6). This is an 

example of parallel evolution, which gave rise to a similar but distinct form from that found in 

the Tethyan province. We infer, therefore, that following their initial migration to the Western 

Pacific, the Mesorbitolina lineages subsequently exhibited parallel lineages evolving at 

different rates within the two provinces, with no further exchange of forms apparent, suggesting 

that the provinces again became isolated one from another.  

The Praeorbitolina – Mesorbitolina lineages are represented in the Western Pacific province 

by Praeorbitolina cormyi (Plate 2, fig. 2), P. wienandsi, Mesorbitolina parva, and M. texana 

(Plate 1, figs 7-8; Plate 3, figs 1-3), and have been recorded from the Late Aptian to Early 

Albian (PZ Aptian 3 -Albian 1), again 5.5 million of years after their first appearance in Tethys. 

Mesorbitolina subconcava (Plate, 1, fig.5; Plate 2, fig. 6; Plate 3, fig. 5) is recorded here for 

the first time from the Early Albian (PZ Albian 1) of the Barito Basin, Southeast Kalimantan, 

3.5 million of years after its first appearance in Tethys.  

Groups (i-iv) forms seem to be missing from the Western Pacific province, unlike in the Tethys. 

Also, unlike the Tethyan realm, the orbitolinids do not survive the Albian-Cenomanian 

boundary, but disappeared completely from Japan at the end of PZ Albian 1 (Iba et al., 2011) 

and, as shown here, from the Barito Basin, Southeast Kalimantan, Indonesia at the end of PZ 

Albian 4.  No orbitolinids are known from east of the Wallace Line in East Indonesia and 

Australia-New Guinea regions (Gorsel 2014), as these foraminifera required a tropical shallow 

marine settings, which was not present at this time along the North West Australian margin. 
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The Americas 

Tethyan orbitolinids belonging to Groups (ii) and (v) seem to have migrated into the American 

province, however, at a much later date than their first appearance in Tethys.  

The American province, unlike the Western Pacific province, contains representatives of the 

dictyoconines from Group (ii). Paracoskinolina, which first appeared in the Barremian (PZ 

Barremian 1) of Tethys, and Dictyoconus, which first appeared in the Aptian (PZ Aptian 1) of 

Tethys, first appeared in the Albian (PZ Albian 1) of Texas, Mexico, and Venezuela (Mayne, 

1955; Arnaud Vanneau and Sliter, 1995), and range to PZ Albian 2. Species such as 

Paracoskinolina sunnilandensis (PZ Albian 2) and Dictyoconus walnutensis (PZ Albian 1 -2) 

are unique and indigenous to the American province, and forms recorded as the same as 

Tethyan species are in fact incorrectly defined. This unique occurrence excludes a West to East 

migration (Cherchi, 2004), and confirms that for large parts of the Albian the American and 

Tethyan provinces were ecologically isolated one from another. 

The earliest form from Group (v) reported from the American province is Palorbitolina 

lenticularis from PZ Aptian 1 (125.0Ma) in deposits of south Mexico, and appear 2.0 million 

years later than its first occurrence in the Late Barremian of Tethys. The Tethyan Mesorbitolina 

are also widespread in the bank and reef deposits of Texas, New Mexico, Arizona, Guatemala, 

Honduras and Venezuela (PZ Aptian 4 - Albian 2). The cosmopolitan forms, Mesorbitolina 

texana - M. parva group occurring from PZ Aptian 3- Albian 1 (119.5-109.8Ma) in Tethys 

(BouDagher-Fadel et al., 2017), but are only reported from the PZ Aptian 4-Albian 2, (116.5-

109.8Ma) of Texas, with M. parva only found in the PZ Albian 2 of the Americas. 

In the Early Albian, species of Mesorbitolina continued to thrive in the Americas but developed 

provincial specific forms, not found in the Tethys or Western Pacific provinces. Thus, the 

American lineage M. minuta - M. gracilis - M. crassa of the PZ Albian 1-2 (Douglass, 1960; 

Monreal and Longoria, 1999) indicates that once the orbitolinids were established in the 

American province in the latest Aptian, they evolved independently from, yet in a parallel way 

to, their Tethyan ancestors, by means of gradual development of their embryonic apparatus. 

Those American species that had been previously reported from the Tethys or the Western 

Pacific were in fact mis-identified. For example, the American Mesorbitolina minuta was 

reported by Matsumaru and Furusawa (2007), from central Hokkaido, but was corrected as a 

synonym of M. texana by Cherchi and Schroeder (2009).  
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DISCUSSION 

The Early Cretaceous is believed to have been a greenhouse period, with high atmospheric CO2 

concentrations (Royer et al., 2007), high global average temperatures with sea-surface 

temperatures exceeding 320C (Skelton and Masse, 2000; Littler et al., 2011), and a stable 

climate (Littler et al., 2011). The earliest Cretaceous (Berriasian-Hauterivian) was also 

characterised by a sustained period of global low sea-levels, which were replaced in the 

Barremian by a significant global sea-level transgression (see Fig. 6), reaching its maximum at 

around 129 Ma, Barremian 2.  This sea-level rise flooded low-lying continental regions and so 

created new ecological niches around the globe, one of which was filled in Tethys by the 

evolving orbitolinids. 

The globally warm period continued in the mid-Cretaceous and was characterized by an 

increase in the number of agglutinated foraminiferal forms having large alveoles, such as the 

lituolid Pseudocyclammina, or forms with internal radial partitions, such as the orbitolinids 

(see BouDagher-Fadel, 2018a). This may have been an adaptation to the extreme climatic and 

oceanic conditions (increases in temperature and oceanic anoxia; e.g., Kerr, 2006) during this 

interval (BouDagher-Fadel, 2008), linked to an inferred dramatic increase of carbon dioxide in 

the atmosphere possibly triggered by enhanced global volcanism (e.g., the Ontong Java flood 

events). The high CO2 levels during this greenhouse period also would have led to increased 

oceanic acidity (Naafs et al., 2016), which would have favored the ecological domination of 

the Textulariida, exemplified by the orbitolinids with their agglutinated tests, over those forms 

with biogenically precipitated calcitic tests that dominated before and after this period. 

Evolving from earlier Valanginian forms, by the Late Barremian (PZ Barremian 3), major new 

lineages of the agglutinated orbitolinids had appeared in Tethys (see Cherchi and Schroeder, 

2004). These robust forms had the ability to survive in many shallow carbonate environments 

(Arnaud-Vanneau, 1980), however, they were most common in the outer platform (Vilas et al., 

1995; BouDagher-Fadel, 2008, 2018a; and see Fig. 12).  

As noted above, we have shown that all cosmopolitan orbitolinids appeared in Tethys before 

migrating to other provinces. Likewise, we have seen that once established in the American 

and Western Pacific provinces, local provincial forms evolved, indicating that they were 

subsequently again isolated from the Tethyan province. In previous studies of Cenozoic LBF, 
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specifically the lepidocyclinids (BouDagher-Fadel and Price, 2010), the miogypsinids 

(BouDagher-Fadel and Price, 2013), the nummulitoids (BouDagher-Fadel and Price, 2014) and 

the orthophragminids (BouDagher-Fadel and Price, 2017), we have observed similar 

developments, with periods of migration from one province to another followed by subsequent 

isolation and development of local provincial linages. In these Cenozoic cases, the periods of 

inter-provincial migration coincided with major sea-level regressions, while the subsequent 

provincial isolation coincided with global sea-level transgressions. As observed in this study, 

it appears that a similar correlation occurs with the Cretaceous orbitolinids, with migrations 

from Tethys occurring during the time of Aptian sea-level low stands (Fig. 6), followed by 

isolation when the sea-level again rose in the Albian.  

Thus, in Tethys, Palorbitolina lenticularis (Plate 2, fig. 1; Fig. 10) first occurred in Late 

Barremian (PZ Barremian 3, 127 Ma), 2 million years before its first appearance in the 

American and Western Pacific provinces (at the beginning of Aptian, PZ Aptian 1, 125.0 Ma). 

This migration coincides with the global sea-level regression that marks the beginning of PZ 

Aptian 1, and which culminates with the global sea-level minimum at the end of PZ Aptian 2. 

Similarly, the earliest Mesorbitolina (e.g., Mesorbitolina lotzei) appeared first in Tethys, in PZ 

Aptian 2, but are not recorded until PZ Aptian 3 in the Western Pacific province, and PZ Aptian 

4 in the American province.  

After the earliest migration in the Aptian, the American Province appears to have been again 

isolated from Tethys throughout the later Albian and the more advanced lineages of Group (v) 

(e.g. Orbitolina, Conicorbitolina) of the Tethyan provinces, which appeared in Late Albian, 

are not found in the Americas. The evolutionary patterns inferred from Tethyan species diverge 

from those observed in the Americas, confirming that these two provinces were isolated from 

each other at this time. The progressive changes seen in the different lineages is regarded here 

as an example of orthogenesis, which resulted in the development of morphologically similar 

yet phylogenetically distinct forms with distinct biostratigraphic and paleogeographic 

characteristics. 

The American orbitolinids became extinct at the end of the PZ Albian 2, 12.8 Ma earlier than 

those of Tethys (end Cenomanian 3). This event corresponds to the opening of the Western 

Interior Seaway triggered by sea-level rises and tectonic forces associated with the subduction 

of the Farallon Plate in the Late Albian. This produced for a period an epicontinental sea over 
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western North America that linked the tropical seas with a previously separate Artic Ocean. 

This fully open seaway persisted in the Albian and the Cenomanian, flooding the orbitolinids 

habitats with cooler deeper waters, and was probably the cause of the orbitolinids extinction in 

the American province. 

In the Western Pacific province, the Late Aptian to Early Albian larger benthic foraminifera 

had their origin in Tethys. Following the Early Albian migration of the Tethyan foraminifera, 

however, they seem to have become isolated in the South East Asian sub-province, again 

correlated with the Early Albian sea-level recovery. During the Late Albian, the lineages 

evolved independently but in parallel to their Tethyan ancestors. The form Conicorbitolina sp. 

is similar to but different in specific characters from the Tethyan C. conica (d‘Archiac). This 

suggests that the migration of Albian foraminifera to the Western Pacific province was only 

possible for a limited period around the Early Albian. Thereafter the orbitolinids of the South 

East Asian sub-province remained small, rare and isolated from those in Tethys, as the 

exclusively Tethyan large species of Orbitolina never appeared in this sub-province. Tthe 

orbitolinids do not survive the Albian-Cenomanian boundary, but unlike the Tethyan realm, 

disappeared completely from the Northwest Pacific sub-province at the end of PZ Albian 1 

(Iba et al., 2011) and, from the South East Asian sub-province at the end of PZ Albian 4.   

CONCLUSION 

Analysis of new material combined with a synthesis of the published literature has allowed the 

understanding of the global evolution and paleobiogeographic distribution of mid-Cretaceous 

orbitolinids within three LBF provinces; namely the Americas, Tethys and the newly identified 

Western Pacific province.  

We conclude that, unlike previously studied Cenozoic LBF forms, such as the lepidocyclinids 

(BouDagher-Fadel and Price, 2010), the miogypsinids (BouDagher-Fadel and Price, 2013), the 

nummulitoids (BouDagher-Fadel and Price, 2014) and the orthophragminids (BouDagher-

Fadel and Price, 2017), which evolved first in the Americas and then migrated eastward to 

Tethys, the Mesozoic orbitolinids originated in the warm tropical shallow platforms of Tethys 

in the Early Cretaceous, Valanginian (PZ Valanginian 1). The subsequent paleogeographic 

migration during the global sea-level low stands of the Aptian of members from orbitolinid 

Group (ii) and Group (v) was bi-directional, moving from Tethys westward to the Americas, 
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and also eastward into the Western Pacific region. There is no evidence of a West to East trans-

Atlantic migration, nor of migration of Western Pacific forms to Tethys. 

We infer that migration stopped after rising sea-level in the Albian. As species became 

geographically isolated, colonizing new but ecologically similar habitats, they thrived and 

evolved similar but distinct parallel lineages, taking advantages of empty niches and optimum 

conditions. This example of parallel speciation is discussed by Schluter et al. (2004), and 

probably reflects that all species shared a genetic predisposition to develop mutations of a 

specific, advantageous type, inherited from their last common ancestor. 

The new understanding of the phylogenetic evolution of the Tethyan, Western Pacific and 

American orbitolinids presented in this paper, when combined with the improved 

understanding of their biostratigraphic ranges and facies relationships, provides the first global-

scale understanding of their development, and so enhances their usefulness as a tool for the 

study of Early to mid-Cretaceous warm-water carbonate platforms, which are so important in 

today’s hydrocarbon exploration. 
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PLATE CAPTIONS 

Plate 1 

Scale bars: Figs 1, 3 = 1mm; Figs 2, 4-8 = 0.5mm. Key words: marg = marginal zone; rad = 

radial zone; ret = reticular zone. All samples are deposited in School of Earth Sciences and 

Engineering Nanjing University. 

Figs 1-3, 6. Mesorbitolina aperta (Erman), Langsham Formation, Tibet, PZ Albian 3-

Cenomanian 1. 1) Axial section through the megalospheric embryonic apparatus; 2) basal 

section of the megalospheric embryonic apparatus; 3) thin section showing the details of the 

radial zone; 6) thin section through the reticular zone. 

Fig. 4. Mesorbitolina sp., Tibet, Aptian. Thin section through the marginal zone. 

Fig. 5. Mesorbitolina subconcava Leymerie, Indonesia, PZ Albian 1. Basal section through 

embryonic apparatus showing the periembryonic chambers. 

Figs 7-8. Mesorbitolina texana (Roemer), Tibet, PZ Aptian 4. Random thin sections: 7) 

showing details of the radial and reticular zones; 8) basal view showing the zigzag main 

partitions with apertural pores at the reentrants. The partitions are broken up in the central 

complex reticular zone. 

Plate 2 

Scale bars = 1mm. All samples are deposited in School of Earth Sciences and Engineering 

Nanjing University. 

Fig. 1. Palorbitolina lenticularis (Blumenbach), Jiarong section, TLK1a, PZ Aptian 2, sample 

14LZ13. 

Fig. 2. Praeorbitolina cormyi Schroeder, Laxue section, TLK1a, PZ Aptian 2, 14 LZ12 

Fig. 3. Palorbitolinoides orbiculata Zhang, Langsham section, TLK1a, PZ Aptian 2, 16SL 02. 

Fig. 4. Mesorbitolina aperta (Erman). Guolong section, TLK1h, PZ Cenomanian 1, 13GL33. 

Fig. 5. Palorbitolinoides hedini Cherchi and Schroeder, Langsham section, TLK1e, PZ Albian 

2, 16SL45. 
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Fig. 6. Mesorbitolina subconcava Leymerie, Langsham section, TLK1c, PZ Aptian 4b, 

16SL29. 

Plate 3 

Scale bars = 1mm. All photos are from sections from the western flank of the Meratus 

Mountains, Barito Basin, Southeast Kalimantan, Indonesia, All samples are deposited in UCL 

Collections. 

Figs 1-3. Mesorbitolina texana (Roemer), PZ Albian 1, BBr-14. 2-3) vertical sections.  

Figs 4, 7. Palorbitolinoides orbiculata Zhang, PZ Albian 1, BBr-14. 

Fig. 5. Mesorbitolina subconcava Leymerie, PZ Albian 1, BBr-14, oblique transverse section 

through embryonic apparatus. 

Fig. 6. Conicorbitolina sp., PZ Albian 4, BBr-22. 
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FIGURE CAPTIONS 

Figure 1. The diagnostic first and last occurrences of Cretaceous planktonic foraminiferal 

species, calibrated against the most recent biostratigraphic time scale and radio-isotope data 

(after BouDagher-Fadel, 2018b). 

Figure 2. (A) Simplified tectonic map of the Tibetan Plateau and adjacent regions, showing the 

Lhasa terrane in the context of the Tibetan Plateau (Pan et al., 2004). JSSZ—Jinsha suture 

zone; BNSZ—Bangong-Nujiang suture zone; IYSZ—Indus-Yarlung suture zone. (B) 

Simplified geological map of the Lhasa terrane modified from Kapp et al. (2005). SGAT—

Shiquan-Gaize-Amdo thrust; GST—Gaize–Selin Co thrust; GLT—Gugu La thrust; ST—

Shibaluo thrust; ELT—Emei La thrust; GT—Gangdese thrust system; GCT—Great Counter 

thrust. Section 1 from the Xigaze forearc basin; Sections 2 and 3 from the Linzhou basin; 

Sections 4, 5 and 6 from the Coqen basin. 

Figure 3. Cenozoic geology of the Barito and Asem-Asem Basins (modified from Supriatna et 

al., 1994; Witts, 2011). 

Figure 4. Gradual morphological changes from primitive orbitolinids to the advanced 

Orbitolina in Tethys. 

Figure 5. Example of evolutionary Tethyan lineages from morphological Group (ii) to (v). 

Figure 6. Variation in sea-level during the mid-Cretaceous based on Miller et al. (2005) 

correlated to the boundaries of the PZ after BouDagher-Fadel (2018b) and showing dominant 

assemblages at the top of regression and transgression phases. 

Figure 7. The provincial distribution of the orbitolinids during Early Cretaceous, Early Albian 

in the Tethys (1), the Western Pacific (2), and the Americas (3), with paleo-oceanic currents 

shown by the white arrows. 

Figure 8. The test architecture of Orbitolina (not to scale). (1) Test dissected in several places 

to show the internal structures (after Douglass, 1960); (2) Diagrams showing micro-structures 

of Orbitolina exposed by tangential sections cut progressively deeper below the epidermis: 

a- Megalospheric embryonic apparatus, b- Slightly eroded surface exposing sub-

epidermal cells; b1/b2- regular/irregular arrangement of secondary epidermal cells 

(stage III), 
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c- Primary sub-epidermal cells (stage II), 

d- Marginal chamberlets (stage I) with residual traces of vertical primary sub-epidermal 

plates only, d1-d4- Sections through marginal chamberlets between (c and d) and the 

beginning of the true radial chamber-passages with canals (e1, e3, e5, e7).  

e1-e2- Radial chamber passages sub-rounded, canals short, wall thickness relatively 

small,  

e3-e4- Radial chamber passages trangular, canals long, wall thickness relatively great, 

e5-e6- Radial chamber passages initially rectangular, with simple perforations, wall 

thickness small, e7-e8- Radial chamber passages irregular – rounded originating from 

vertical pairs of primary sub-epidermal cells, canals short, wall thickness small, f- Main 

triangular partitions with zigzag shape when seen deeper in the test, g- the complex 

central zone. 

 

Figure 9, (a-b) – Diagrammatic axial sections of orbitolinids, a- showing closely spaced 

chamber layers with primary horizontal sub-epidermal plates only; b- showing widely-spaced 

chamber layers with primary and secondary horizontal sub-epidermal plates. (c-e) 

Diagrammatic basal sections of orbitolinids, c- marginal zone broad, marginal chamberlets 

triangular, radial walls thick, straight; d- marginal zone broad, marginal chamberlets 

rectangular, radial walls thin, zigzag; e- marginal zone narrow, marginal chamberlets sub-

triangular, radial walls moderately thick, vertical primary sub-epidermal plates thickening 

inward with some prolonged as radial walls. Note: In species having triangular radial passages, 

the thickness of radial walls as seen in basal views will vary according to the position on the 

section just above or just below a chamber floor. (f-j) Diagrams illustrating radial and retucular 

zones of orbitolinids as seen in basal views; f- radial partitions; g- retucular partitions, h- radial 

chamber passages, i- radial and retucular chamber passages, j- complex retucular zone, no 

radial zone. (k-r) Diagrams showing various textures of the central zone in Orbitolina as 

observed in axial and oblique sections; shaded areas and lines represent shell material. (k-o) 

axial sections; k – Wall and floor thickness and chamber diameters sub-equal; chamber layers 

clearly marked and connected by short, sub-vertical canals; l – wall and floors thin; chamber 

layers clearly connected by simple perforations and clearly recognisable by alignment of 

longitudinal segments of chamber passages in the radial zone; m – wall and floors thin; 

chamber layers clearly connected by simple perforations but not clearly recognisable; the 

section is cut through the retucular zone and chamber segments are all more or less transverse; 
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n – wall thickness small, floor thickness relatively great; chamber layers clearly marked and 

connected by oblique canals not visible in axial sections; o, wall and floor thickness s great; 

chamber layers not clearly recognizable owing to wide spacing of chamber segments; oblique 

canals not visible in axial sections. (p-r) oblique sections; p – Oblique section corresponding 

to (a) above; labyrinthic texture; canals (when visible) not clearly differentiated from chamber 

segments; q – Oblique section corresponding to (c) above; that corresponding to (b) would be 

similar but would show a few longitudinal chamber segments; cellular texture; r – Oblique 

section corresponding to (d) or (e) above; dentritic texture; small chamber segments connected 

by long, oblique canals forming a roughly polygonal network.  

Figure 10, Enlargement of parts of Palorbitolina lenticularis (Blumenbach) figured by 

BouDagher-Fadel (2018a), scale bar = 100 μm. (A) Transverse section showing the triangular 

main partitions; (B) the same transverse section showing the central complex reticular part of 

the test; (C) the same transverse section showing the subdivision of the marginal chamberlets 

into cellules/chamberlets.  

Figure 11. Range chart for some key orbitolinid species from Group (v) in the Tethyan and 

Western Pacific, and American provinces. 

Figure 12. The facies range of the dominant orbitolinids in a Tethyan carbonate shelf. 

Integrated reef/ramp model for Neogene carbonates. The ramp model is indicated by the blue 

dotted line. In the case of gently sloping ramp, the outer ramp lithofacies are made of mudstones 

and wackestones, while in the middle ramp mudstone with carbonate nodules would develop. 



1 2

3 4

5

6 7 8

marg

rad
ret

m
arg

rad

Plate 1



1 2

3 4

5 6

Plate 2



1 2

3 4

5 6 7

Plate 3



 A
g
e
 (

M
a
)

P
la

n
k
to

n
ic

 z
o
n
a
ti
o
n

6
6
.0

M
a

a
s
t.

C
a
m

p
.

S
a
n
t.

C
o
n
.

T
u

r.
C

e
n
.

1
0
0
.5

A
lb

.
A

p
t.

B
a
rr

.
H

a
u
t.

V
a
l.

1
4
5
.0

B
e
rr

.
T

it
h
.

Rugotruncana subpennyi

111.4

97.2
98.8

C
re

ta
c
e
o
u
s

E
a
rl
y

L
a
te

P
e
ri
o
d
, 

E
p
o
c
h
,

S
ta

g
e

Jurassic

1

2

3

a

b

1

2
a
b

3

a1

b

2

3

1
2

1

1

1

2

3

2

2

3

2

4

1

3

4 a

b

1
2
3

1

2

1

2

a
b

b
a

a
b

b
a
a
b
ba

b
a

Conoglobigerina gulekhensis

Diagnostic First Occurrence of 
Planktonic Foraminifera

Diagnostic Last Occurrence of 
Planktonic Foraminifera

Conoglobigerina gulekhensis
Gorbachikella grandiapertura

Gorbachikella grandiapertura

Praehedbergella handousi

139.8

132.9

136.6

Praehedbergella handousi

125.0

Gorbachikella anteroapertura

136.65

129.4

132.4

Gorbachikella anteroapertura

B. aptiana/Pr. tuschepsensis

Blefuscuiana aptiana

125.0

132.9

113.0

119.5

122.9

116.5
115.0

100.5

93.9

89.8

86.3

83.6

72.1

106.7

Blefuscuiana infracretacea

Blefuscuiana maslakovae

B. maslakovae/ L. globulifera

Lilliputianella kuhryi
Blefuscuiana kuznetsovae

Praehedbergella tatianae

122.9

106.7

113.0

109.8

Hedbergella rischi

Hedbergella rischi100.5

Ticinella primula
Ticinella roberti
Ticinella praeticinensis

Ticinella madecassiana
Thalmanninella gandolfi

102.2
101.5

102.2 Ticinella praeticinensis

Thalmanninella globotruncanoides
Thalmanninella greenhornensis
Thalmanninella reicheli
Rotalipora cushmani95.1 Rotalipora cushmani93.9
Sigalitruncana biconvexiformis Concavatotruncana  elata

92.8
92.8

Helvetoglobotruncana helveticae
91.3

Helvetoglobotruncana helveticae
Dicarinella primitiva

Sigalitruncana biconvexiformis89.8
91.3

Marginotruncana paraconcavata

Marginotruncana paraconcavata
88.0 Globotruncana lapparenti

Globotruncana lapparenti

Concavatotruncana  asymetrica

Concavatotruncana  asymetrica

Globotruncana linneiana
Rugoglobigerina subrugosa

Globotruncana mariei

Globotruncanita atlantica
Radotruncana calcarata,

Radotruncana calcarata

Rugotruncana subpennyi

Plummerita hantkeninoides

Racemiguembelina powelli

Rugoglobigerina subrugosa

Plummerita reicheli
Ventilabrella multicamerata

Contusotruncana plicata

Contusotruncana plicata
Globotruncana spp./Rugoglobigerina spp.

145.0

Conoglobigerina conica
Conoglobigerina conica

152.1

145.0

Praehedbergella tuschepsensis
129.0
127.0

129.0
Blefuscuiana daminiae
Lilliputianella globulifera

Praehedbergella ruka 119.5

86.3

84.9
85.6

83.6

77.0

80.3

74.5

70.0
71.0

67.0
66.2

80.3

74.5

66.2

70.0

Radotruncana subspinosa72.1

77.0

Globotruncanita atlantica
Globotruncanita stuarti

67.0

66.0

Conoglobigerina sp. A

Alanlordella bentonensis99.6
95.1 Favusella washitensis

Pseudothalmanninella subticinensis104.4

139.8 Gorbachikella sp.

Fig. 1



Fig. 2



Fig. 3



Coskinolinoides
(Aptian - Albian)

Orbitolina (Albian 3 - Cenomanian)

Periembryonic chambers

Proloculus

Deuteroconch

Urgonina
Barremian

Falsurgonina
(Barremian 3 - Aptian 1)

Praeorbitolina
(Aptian - Albian)

Mesorbitolina
(Aptian - Cenomanian 1)

Group (ii)

Simplorbitolina
(Aptian - Albian)

Group (iv)

Campanellula
(Valanginian 1 -Barremian 3)

Group (i)

Group (v)

Valdanchella
(Valanginian)

Group (ii)

Group (ii)

Orbitolinopsis
(Aptian - Albian 1)

Group (iii)

Palaeodictyoconus

(Valanginian 2 - Aptian)

Dictyoconus

(Aptian 1 - Oligocene)

Neorbitolinopsis

(Albian - Cenomanian 1)

Eopalorbitolina
Barremian

Palorbitolina
(Barremian 3 - Aptian) Palorbitolinoides

(Aptian - Albian 1)

Fig. 4



 A
g

e
 (

M
a

)

P
al

or
bi

to
li

no
id

es

P
al

or
bi

to
li

na

E
op

al
or

bi
to

li
na

P
ra

eo
rb

it
ol

in
a

M
es

or
bi

to
li

na

O
rb

it
ol

in
a

C
on

ic
or

bi
to

li
na

6
6

.0

M
a

a
st

.
C

a
m

p
.

S
a

n
t.

C
o

n
.

T
ur

.
C

e
n

.

1
0

0
.5

A
lb

.
A

p
t.

B
a

rr
.

H
a

u
t.

V
a

l.

1
4

5
.0

B
e

r.
T

ith
.

C
re

ta
ce

o
us

E
a

rly
L

a
te

Period, 
Epoch,
Stage

Jurassic

Fig. 5



123413 2412

Fig. 6



1

2

2

3
1

Group (i) to (v) Group (v)

Group (v)

Group (v)
Group (ii)

Group (v)

Fig. 7



b1

b2

c d

d1

d2 d3

d4

e1 e2

e3 e4

e5 e6

e7 e8

1

2

Fig. 8



a b

c de

f g h

I j

k l m

n o

p q r

Fig. 9



A

B

C

Fig. 10



 A
ge

 (
M

a)

 P
la

nk
to

ni
c 

zo
na

tio
n

Pa
lo
rb
ito

lin
a 
le
nt
ic
ul
ar
is

M
es
ob

ito
lin
a 
pa

rv
a

M
es
or
bi
to
lin
a 
te
xa
na

C
en

.
A

lb
.

A
pt

.
B

ar
r,

1
2
5
.

C
re

ta
ce

ou
s

P
er

io
d,

 E
po

ch
,

S
ta

ge

3

1

1

2

2

2

3

4

3

4a

1
1
3
.

1
0
0
.

4b

11
2
9
.4

3

1

2

Tethys

Western Pacific

Americas

Fig. 11



Sea bed

Planktonic 

Base of wave action

Abyssal

Pelagic 
micrite

Forereef shelf

Reef

algal coralgal

coralgal

biostromes biostromes
micrite/sparite sparite

bioherms

calcarenites calcarenites/
calcirudites

calcirudites

Agglutinated 
foraminifera

Oligophotic   ‐ Mesophotic zone

Aphotic zone

Oligotrophic Oligotrophic ‐ Mesotrophic

Middle ramp

Outer ramp 

Fig. 12


