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ABSTRACT 68 

 69 

Multi-temporal remote sensing imagery can be used to explore how mangrove assemblages 70 

are changing over time and facilitate critical interventions for ecological sustainability and effective 71 

management. This study aims to explore the spatial dynamics of mangrove extents in Palawan, 72 

Philippines, specifically in Puerto Princesa City (PPC), Taytay, and Aborlan, and facilitate future 73 

prediction for Palawan using the Markov Chain model. The multi-date Landsat imageries during the 74 

period 1988–2020 were used for this research. The Support Vector Machine algorithm was 75 

sufficiently effective for mangrove feature extraction to generate satisfactory accuracy results (>70% 76 

Kappa coefficient values; 91% average overall accuracies). In Palawan, a 5.2% (2,693 ha) decrease 77 

was recorded during 1988–1998 and an 8.6% increase in 2013–2020 to 4,371 ha. In PPC, 95.9% 78 

(2,758 ha) increase was observed during 1988–1998 and 2.0% (136 ha) decrease during 2013–2020. 79 

The mangroves in Taytay and Aborlan both gained an additional 2,138 ha (55.3%) and 228 ha (16.8%) 80 

during 1988–1998 but also decreased from 2013 to 2020 by 3.4% (247 ha) and 0.2% (3 ha), 81 

respectively. However, projected results suggest that the mangrove areas in Palawan will likely 82 

increase in 2030 (to 64,946 ha) and 2050 (to 66,972 ha). This study demonstrated the capability of 83 

the Markov Chain model in the context of ecological sustainability involving policy intervention. 84 

However, since this research did not capture the environmental factors that may have influenced the 85 

changes in mangrove patterns, it is suggested the addition of Cellular Automata in future Markovian 86 

mangrove modelling. 87 

 88 

Keywords: Change detection, Image classification, Landsat, Land use/land cover, Markov Chain 89 

Model, Spatial dynamics, Support Vector Machine  90 
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1. INTRODUCTION 91 

 92 

Mangroves are a group of complex trees and shrubs that naturally inhabit the intertidal zones of the 93 

coastal tropical and subtropical regions [1, 2]. Although they can tolerate a wide range of salinity, 94 

from hypersaline exceeding 100 parts per thousand to lower salinities of 2 parts per thousand [3], 95 

they cannot compete reproductively with other terrestrial plants because the latter have a better 96 

adaptation to a higher-elevation environment [4]. Mangrove forest is one of the most important 97 

coastal ecosystems because it provides bio-productivity, e.g., timber and fuelwood, protection from 98 

natural hazards and regulation of natural phenomena, e.g., flood, storm erosion, and salt intrusion [1, 99 

5, 6], serves as a nursery and habitat ground for biodiversity, e.g., breeding and spawning [7, 8, 9], 100 

provisioning of socio-economic and cultural importance, e.g., livelihood, ecotourism, recreation, and 101 

aesthetic [10, 11], and help mitigate climate change, e.g., carbon sequestration [10, 12].  102 

 103 

There are about 65 mangrove species around the world [13], of which at least 50% currently grow in 104 

the Philippines [14]. According to the Food and Agricultural Organization [15], Asia has more 105 

extensive mangrove forests than any other continent. The Philippines is considered one of the top 106 

biodiversity “hot spot” countries in the world [16]. The Palawan Council for Sustainable 107 

Development Staff [17] initially reported 27 mangrove species in Palawan. About 22.23% (56,261.3 108 

ha) of the remaining mangrove forests in the Philippines are found in Palawan [18]. However, the 109 

ability of this ecosystem to colonize and maintain its spatial setting is increasingly being affected by 110 

anthropogenic disturbances [19]. Consequently, mangrove forest cover in the Philippines has 111 

decreased from approximately 500,000 ha in 1918 to about 120,000 ha by the end of 1995 [20, 21]. 112 

[21] reported that the two main contributing factors for this decline are raw product overexploitation 113 

and coastal land use conversions (e.g., agriculture, residential settlements, industrial, and aquaculture). 114 

Although the recent estimates from the Department of Environment and Natural Resources (DENR) 115 

[22] suggest an increase in mangrove extent in 2003 (to 247,362 ha), this estimate is still much lower 116 

than the estimated cover area a century before. 117 

 118 

Mangrove ecosystems form a complex structure (e.g., less accessible Rhizophora’s complex 119 

bifurcated and looping root structure) and the technical skills required and cost associated with the 120 

forest samplings make extensive in-situ sampling difficult. Thus, remote sensing techniques provide 121 

a convenient tool to map, assess, and monitor the mangroves over large areas and can be used to 122 

detect change over time [23, 24, 25]. In the Philippines, the utilization of remotely-sensed satellite 123 

data (e.g., [18]) has been incorporated into policy formulation and enforcement. However, mangrove-124 

related projects in the country remain relatively scarce with only a few national and local mapping 125 
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efforts focused on the classification and detection of changes in the mangrove’s extents, notably from 126 

nominal years of 1990-2010 [26] and 2003-2013 [27]. In spite of the low utilization of mangrove 127 

remote sensing in the Philippines and the absence of projected data about how the remaining 128 

mangroves in the country will respond to the impacts of climate change, mitigating and controlling 129 

the magnitude of climate change’s impacts on mangrove ecosystems has increased in scientific 130 

interest in Southeast Asian countries [28]. The mangroves of Palawan have been protected under the 131 

direct human inventions through the International Union for Conservation of Nature (IUCN) 132 

protected area Category I-IV [18] and 1992 Republic Act No.7611, commonly known as the Strategic 133 

Environmental Plan for Palawan Act (SEP Law) [29]; yet this unique ecosystem remains under threat 134 

due to climate change and associated rising sea levels [18, 30]. 135 

 136 

Several land use/land cover (LULC) techniques have been developed and utilized in the last three 137 

decades, which primarily aim to investigate the spatiotemporal changes of LULC patterns using 138 

satellite data to assist in ecological management and decision-making [31]. The parametric (e.g., 139 

maximum likelihood classifier, [32]) and nonparametric (e.g., artificial neural networks, [33]) 140 

classification algorithms can handle complex classification tasks [34]. To perform the classification 141 

using a supervised classification technique, training samples must be extracted, which can be time-142 

consuming when using multi-temporal remotely sensed imagery. Unsupervised classification 143 

techniques have also been used to map mangrove extent and change over time, for example using 144 

vegetation indices (e.g., Normalized Difference Vegetation Index, Mangrove Vegetation Index; [35, 145 

36]) and clustering and threshold techniques (e.g., [37]). The Markov Chain model [38, 39] is one of 146 

many prediction techniques that are able to assess the LULC changes and make a projection of these 147 

changes in the future [40, 41, 42, 43]. Understanding the patterns of change in mangrove geographic 148 

distribution and projecting the range of shifts in the future will link the science to policy and decision-149 

making processes for biodiversity conservation and management [44]. 150 

 151 

Through the Global Challenges Research Fund (GCRF) Blue Communities (BC), this research aims 152 

to: (1) develop a mapping approach to investigate the changes in mangrove extents in Palawan using 153 

multi-temporal Landsat imagery during the years, 1988, 1993, 1998, 2003, 2008, 2013, 2018, and 154 

2020; (2) determine the areal extent of change in mangrove forests in Palawan including the three 155 

case study areas of GCRF BC from 1988 to 2020; and (3) implement change projections of the 156 

mangrove forests in Palawan for 2030 and 2050 using a Markov Chain model. 157 

 158 

2. MATERIALS AND METHOD 159 

 160 
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2.1. Study Area 161 

 162 

Palawan is a long and narrow island province in the Philippines (09°30’N and 118°30’E) with an 163 

approximate total area of 1,489,626 ha and is located at the western portion of the archipelago (Figure 164 

1) [17, 45]. Its almost 2,000 km coastline is one of the longest shorelines in the country and accounts 165 

for about 1,780 islands. The South China Sea borders the western coast while the Sulu Sea and the 166 

Malaysian Sabah Island border the eastern and southern sides of Palawan [46]. The island is 167 

comprised of 23 municipalities, one urbanized city (Puerto Princesa), and 433 small villages called 168 

“Barangay” [47]. 169 

 170 

Palawan is known as the Philippines’ “last ecological frontier” due to its rich culture and biodiversity 171 

[48]. As per Presidential Proclamation No. 2152 of 1981, all mangrove forest areas in the province 172 

are protected as Palawan was declared a Mangrove Swamp Forest Reserve [17, 45]. In 1991, Palawan 173 

was designated as a biosphere reserve under the Man and the Biosphere Programme (MAB) of the 174 

United Nations Educational, Scientific, and Cultural Organization (UNESCO). The following year, 175 

the 1992 SEP Law assisted the MAB’s declaration in the sustainability of Palawan’s biological and 176 

cultural diversity. In succeeding years of recognizing the biodiversity richness of the province, two 177 

out of nine UNESCO World Heritage Sites in the Philippines are found in Palawan: the Puerto 178 

Princesa Subterranean River National Park (inscribed in 1999) and the Tubbataha Reefs Natural Park 179 

(inscribed in 1993, 2009) [48].  180 

 181 

Mangroves form one of the components of the coastal and marine ecosystems in the Philippines [49]. 182 

They are susceptible to various effects of climate change such as sea-level rise [50]. Therefore, 183 

adoption of various climate change adaptation interventions such as the national framework strategy 184 

on climate change [51] and the development of the Philippine exposure map on climate change [52] 185 

have been of great importance for the identification of vulnerable areas of Palawan that are the most 186 

susceptible to climate change. 187 
  188 
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Figure 1. A map of Palawan, Philippines highlighting the southern and northern divisions and three 190 

of the GCRF BC’s case study areas–Puerto Princesa City and the municipalities of Taytay and 191 

Aborlan. 192 

 193 

The entire methodological process of mangrove classification and predictive modelling underwent 194 

three major processes: (1) Raw data and pre-processing, (2) Image classification and change detection, 195 

and (3) Mangrove change projection (Figure 2). 196 

 197 

 198 
Figure 2.  Diagram of multi-temporal mangrove change detection in Palawan using the Landsat 199 

imageries, supervised Support Vector Machine classification, and Markov Chain model. 200 

 201 

2.2. Pre-Processing the Landsat Sensor Data 202 

 203 

The multi-temporal resolution and multi-spectral Landsat 4-5 Thematic Mapper (TM), Landsat 7 204 

Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) images in 205 

multiple years between 1988 and 2020 were used for this study (Supplementary Information Table 206 

S1). A total of 20 scenes for TM (for years 1988, 1993, and 1998), 18 scenes for ETM+ (for years 207 

2003, 2008, and 2013), and 11 scenes for OLI (for years 2018 and 2020) were sourced using the 208 

Semi-automatic Classification Plugin (SCP) version 7.9.0 Matera in Quantum Geographical 209 

Information System (QGIS) version 3.22.1 Białowieża.  210 

 211 

To normalize various conditions across the multitemporal and multispatial Landsat datasets, it is 212 

imperative that Landsat data undergoes pre-processing routines to enhance the quality and remove 213 

various radiometric and geometric errors in each image [53, 54, 55, 56]. Thus, radiometric calibration 214 

and atmospheric correction were employed for this study.  215 
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 216 

The 2018 OLI Level-2 data were used as the reference image to apply geometric correction to the 217 

satellite images in each epoch. The parameters of this transformation function were derived from a 218 

spread of 200 Ground Control Points (GCPs) which were uniformly chosen from distinct topographic 219 

features throughout the target image. To match with the original pixel size of the Landsat data, all 220 

images were resampled to a ground resolution of 30 x 30 m and reprojected to WGS 84 UTM datum. 221 

The Root Mean Square Error (RMSE) of 0.25 pixel was calculated and was deemed enough to 222 

facilitate accurate LULC change detection analysis [57]. Throughout these processes, the Nearest 223 

Neighbour resampling algorithm was employed to maintain geometric integrity across all the images.  224 

 225 

Following geometric correction was the radiometric correction [55]. Upon checking the image noise 226 

(e.g., dropouts and bit errors) for TM and ETM+ images using the Environmental Systems Research 227 

Institute’s ArcGIS version 10.7.1, a correction was not necessary. The next process of radiometric 228 

calibration involved the conversion of the signal of the quantified energy from multispectral 229 

brightness values or digital numbers (DNs) into Top-of-Atmosphere (TOA) reflectance units. In 230 

particular, this process involved two steps: (a) the conversion of DNs to spectral radiance (Lλ) and (b) 231 

the transformation to TOA reflectance (ρλ) as corrected for illumination variabilities (i.e., sun angle 232 

and Earth-sun distance) within and between scenes [55, 56, 58, 59]. For the TM and ETM+ data, the 233 

Equations (Eq 1), (Eq 2), (Eq 3), (Eq 4), and (Eq 5) were applied, respectively: 234 

 235 

𝐿𝜆 = 𝐷𝑁 × 𝐺 + 𝐵 236 

 237 

where Lλ corresponds to the radiance measured at the sensor bandwidth for each band (Wm-2sr-1µ-1); 238 

DN is the digital number value; G and B are the (Gain) slope and (Bias) intercept of response functions, 239 

calculated as follows: 240 

 241 

𝐵 = 𝐿𝑚𝑖𝑛 − (𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛/𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛) × 𝑄𝑚𝑖𝑛  242 

 243 

𝐺 = (𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛/𝑄𝑚𝑎𝑥 −𝑄𝑚𝑖𝑛) 244 

 245 

where Lmin and Lmax are the lowest and highest radiance measured by a detector in mWcm-2sr-1, as 246 

reported by TM and ETM+ metadata files; Qmin and Qmax correspond to the minimum and maximum 247 

values of DN for TM and ETM+ sensors, ranging from 1 to 255. The TOA reflectance (𝜌𝜆 ) 248 

calculation for each band applied on a pixel-by-pixel basis for each scene in each epoch and the output 249 

reflectance values were scaled to an 8-bit data range, this can be calculated as: 250 

(Eq 1) 

(Eq 2) 

(Eq 3) 
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 251 

𝜌𝜆 =
(𝜋 × 𝐿𝜆 × 𝑑2)

𝐸𝑜𝜆 × 𝑜𝑠𝜃𝑠
 252 

 253 

where d is the Earth-sun distance correction; Lλ is the radiance as a function of bandwidth; E0λ is the 254 

mean solar exoatmospheric irradiances and θs is the solar zenith angle. Following the corrections of 255 

sensor gains and offsets spectral band solar irradiance and solar zenith angle, and after the topographic 256 

normalization implementation, was the application of absolute atmospheric correction and relative 257 

correction. The removal of additive path radiance (Lp) was calculated using (Eq 5) based on the dark-258 

object subtraction (DOS) 1% technique [60, 61, 62]. The DOS assumes that the lowest reflectance 259 

value for dark objects across the image is 1% and any values greater than zero can be attributed to 260 

the additive effects of haze [41, 55, 63]. The relatively constant errors removal was implemented 261 

using the formula:  262 

 263 

𝐿𝑝 = 𝐿𝑚𝑖𝑛 + [
(𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛)

255
] × 𝐷𝑁𝑚𝑖𝑛 − 0.01 × [(𝐸𝑜𝜆 × 𝑐𝑜𝑠𝜃𝑠 × 𝑇𝑧) + 𝐸𝑑𝑜𝑤𝑛] ×

𝑇𝑣
𝜋

 264 

 265 

where Lp is the path radiance; the DNmin adopted the histogram technique [60] allowing the haze DN 266 

value to be automatically calculated from the DN frequency histogram of the image; Tv and Tz are 267 

assumed equally in state thereby downward diffusion of radiation at the surface (Edown = 0) is absent 268 

[60].  269 

 270 

2.3. Spectral Bands Selection 271 

 272 

In LULC classification, different land cover classes may respond to different ranges of wavelengths, 273 

and not all spectral bands are useful for the analysis. Consequently, it is imperative to appropriately 274 

identify the useful ranges of wavelength since the procedure increases class discrimination [64]. [65] 275 

made an assumption that the low reflectance of mangroves in the short wavelength infrared (SWIR) 276 

region of the electromagnetic spectrum was due to the weak-scattering signal of the intercellular 277 

structure of the leaves. Unsurprisingly, the low reflectance of the mixed mangrove assemblage with 278 

the surrounding mud and water could further reduce the reflected radiance of mangroves in general. 279 

Therefore, they used the Jeffries-Matusita distance technique to calculate the spectral separability 280 

among the LULC classes. This technique was adopted for this research and was conducted using the 281 

spatialEco package version 1.3–7 in R programming software [66, 67, 68]. 282 

 283 

(Eq 4) 

(Eq 5) 
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The Jeffries-Matusita criterion measures the distance between the means of each class feature and the 284 

distribution of values around the means, giving a measure of spectral separability between the features 285 

of the class, and thus able to determine the quality of the target class samples [68, 69]. Values range 286 

from 0 to 2, where 2 indicates high separability while the lower values indicate a possible 287 

misclassification of the classes [70]. In the latter case, distances registered below the threshold of 1 288 

were removed from the prioritized band image. Additionally, we have considered the Jeffries-289 

Matusita values between 1.7–1.9, as good class separability [63]. In this study we combined the 290 

equivalent bands of each sensor to give an overall distance for the colour band. The generated results 291 

for the Jeffries-Matusita distance calculation indicate that the highest levels of separability between 292 

the mangrove vegetation and non-mangrove vegetation classes were observed for bands 5–4–3 for 293 

TM and ETM+ and 6–5–4 for OLI (Table 1). Thus, the band combination of SWIR1–NIR–Red was 294 

selected as the most appropriate band for the entire image classification. 295 

 296 

Table 1. Spectral separability results using the Jeffries-Matusita distance technique to isolate the 297 

differences between the mangrove vegetation and non-mangrove areas for each band of TM, ETM+, 298 

and OLI sensors.  299 

TM 

Bands 

ETM+ 

Bands 

OLI 

Bands 

Band 

Name 

Jeffries-

Matusita 

1 1 2 Blue 0.51 

2 2 3 Green 0.75 

3 3 4 Red 1.63 

4 4 5 NIR 1.86 

5 5 6 SWIR 1 1.91 

6 6 10 Thermal 0.72 

7 7 7 SWIR 2 1.25 

 300 

2.4. Cloud Patching Process, Stacking, Mosaicking, and Masking 301 

 302 

Clouds and cloud shadows have a significant effect on the satellite sensors’ spectral bands reflectance 303 

values [71] and degrade the quality of the sensors’ data [72]. Therefore, the Landsat database was 304 

searched for the clearest satellite images of the study area with the lowest cloud cover. However, for 305 

images where clouds are present, more than one scene from the same epoch was acquired to facilitate 306 

the cloud patching process using the Fmask algorithm [71, 73]. The selection of different eras was 307 

based on the availability of quality data. Thus, the year 2021 was excluded from the potential list of 308 

options because most of the data available were poor in quality. All the selected bands were stacked 309 

together and created a seamless mosaic of the study area. The ocean areas were masked out using the 310 

Normalized Difference Vegetation Index with a threshold of cut-off of 0.5 [65]. 311 

 312 
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2.5. Image Classification and Change Detection Analysis 313 

 314 

To delineate the mangroves of Palawan, this study used the Support Vector Machine Classifier (SVM) 315 

algorithm. This linear supervised non-parametric statistical learning theory has been proven effective 316 

in LULC research [74, 75, 76]. The SVM-based classifier requires a training sample and one of the 317 

advantages of this technique is that it can generalise well from a limited amount of training data 318 

compared to alternative methods [74]. This algorithm uses successive executions of a process until it 319 

generates the probabilistic estimates for known and unknown classes. In this entire procedure, the 320 

Bayesian minimum-error decision rule is adopted [77]. 321 

 322 

The overall accuracy results of SVM depend on the kernel used as well as the chosen kernel’s 323 

parameters and methods [78]. We chose the parameters Gamma (G) in Radial Basis Function (RBF) 324 

kernel and the C hypermeter in SVM to control error, using the cross-validation (CV) optimization 325 

technique [79]. We set the default threshold values of 0.091 for G and 100 for penalty parameter C 326 

to gain lower bias and penalize incorrect classification heavily [75]. The RBF kernel formula (Eq 6) 327 

is shown below: 328 

 329 

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝(−g||𝑥– 𝑥′||2), g > 0 330 

 331 

where ||x – x´||2 is the squared Euclidean distance between two data points, x and x´; g is the user-332 

defined gamma. Across the series of Landsat data, we created two spectral classes including (a) 333 

mangrove vegetation, i.e., intertidal halophytic forests both natural and rehabilitated, and (b) non-334 

mangrove areas, e.g., rivers, estuaries, lakes, sea, tidal mudflats, agricultural areas, grassland, high- 335 

and lowland forests, bushes, residential and industrial areas in rural and urban regions, aquaculture 336 

ponds, salt pans, etc. A random sampling technique was used to select a minimum of 400 pixels for 337 

each spectral class. For all the classified Landsat images, the total mangrove areas were quantified.  338 

 339 

Assessing the accuracy of multi-decadal mangrove change is challenging due to the limited 340 

availability of in-situ reference datasets in the time period of interest [80]. In this work, the accuracy 341 

of mangrove classification was assessed using government data derived from the 2010 historical 342 

record of the National Mapping and Resource Information Authority (NAMRIA). The training 343 

mangrove forest polygons were validated through the established testing samples and the accuracy 344 

was assessed using the producer’s accuracy, the user’s accuracy, the overall accuracy, and the Kappa 345 

coefficient values [81]. This study produced >86% overall accuracy results by which the definite 346 

(Eq 6) 
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mapping identification of different land use/land cover categories generated valid results [82]. 347 

Furthermore, the Kappa analysis for this study generated results >70%. 348 

 349 

Upon completing the rigorous pre-processing, image classification, and validation procedures, we 350 

conducted the change detection for Palawan and the three case study areas of GCRF BC, using the 351 

SCP version 7.9.0 Matera in Quantum in QGIS version 3.22.1 Białowieża, to determine the 352 

magnitude of changes in mangrove vegetation and non-mangrove classes, and the trends of these 353 

changes across three time periods (1988–1998, 1998–2008, and 2008–2020).  354 

 355 

2.6. Mangrove Change Projection  356 

 357 

A Markov Chain is a stochastic process that describes the likelihood of changing one state to another 358 

[83] through the implementation of neighborhood rules [84]. The Markovian process has been 359 

implemented in many LULC studies due to its efficiency in future land use prediction [40, 41, 42, 360 

85]. In mangrove forest spatial classifications, the integration of the Markov Chain model [65] and 361 

its cross-functional application with Cellular Automata [85, 86] is considerably growing.  362 

 363 

In statistical terms, the Markov Chain Modelling can effectively make a prediction of the changes in 364 

LULC based on the calculation of the transition probabilities of one system at time t2 with the state 365 

of the system at time t1 according to the specific year [41, 87]. The transition probability matrix [88] 366 

is one of the descriptive tools generated in the process where the mangrove areas transitional matrix 367 

derived from different mangrove classes [86]. The Markov processes used in this study are expressed 368 

in equations (Eq 7), (Eq 8), and (Eq 9): 369 

 370 

𝑣𝑡2 = 𝑀𝑣𝑡1 371 

 372 

where the input LULC proportion column vector corresponds to vt1 and the output vector to vt2; M is 373 

an m x m transition matrix for the time interval ∆t = t2 – t1.  The development of the probability 374 

transition matrix (pij) can be calculated using as follows:  375 

 376 

ni=∑ nij

q

j=1

 377 

 378 

pij=nij/ni 379 

 380 

(Eq 9) 

(Eq 7) 

(Eq 8) 
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where nij is the number of pixels of class i from the first date (current state) that were changed to class 381 

j in the second date (next period); cell ni is in the change detection matrix by row marginal frequency; 382 

q is the total number of classified classes; pij is the land-cover probabilistic transition matrix. We have 383 

conducted three projections using the Markov Chain model. The first one was the mangrove 384 

projection for 2013 using the 1988-1993 datasets. In the second and third projection scenarios, we 385 

chose the years 2013–2020 datasets to predict the spatial changes of mangroves for the years 2030 386 

and 2050. Using the IDRISI Environment version 17.00, the Markov Chain transition probability 387 

matrix was generated. 388 

 389 

2.7. Model Validation of the Markovian Process 390 

 391 

We validated the model by comparing the simulated mangrove and non-mangrove areas in 2013 with 392 

the observed data in the 2013 ETM+ map. The output was tested with observed values using the 393 

Pearson’s Chi-squared 𝜒2 test to examine the appropriateness of the model: 394 

 395 

𝜒2 =∑
(𝑂 − 𝐸)2

𝐸
 396 

 397 

where O represents the simulated value (1988–1993) and E is the actual value of the transition matrix 398 

(2013–2020). The calculated 𝜒2 is compared with the 𝜒2 from the table at alpha-level of 0.05 with 399 

degrees of freedom (2–1)2. The land-use change analysis is compatible with the hypothesis of data 400 

independence if the computed 𝜒2 is smaller than the tabled-value 𝜒2.  401 

 402 

3. RESULTS  403 

 404 

3.1. Spatiotemporal Distribution of Mangroves and Comparison with the Previous Records  405 

 406 

Our mapping classification resulted in two major classes, the mangrove forests and non-mangrove 407 

areas. We have presented in Figure 3 the spatiotemporal distribution of mangroves in Palawan within 408 

the span of 32 years, particularly the time periods of 1988, 1993, 1998, 2003, 2008, 2013, 2018, and 409 

2020. We observed that mangrove forests in Palawan were generally concentrated around the coastal 410 

boundaries, particularly in estuarine fringes, bays, riverbanks, and margins between land and sea. 411 

Based on this study and the previous records, the mangrove forests cover in Palawan were still 412 

relatively high compared with the other provinces in the Philippines (e.g., [18]).  413 

 414 

(Eq 10) 
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The largest mangrove concentrations in Palawan were found in the eastern part of the island. These 415 

mangroves form dense and continuous stands in Puerto Princesa City, Bataraza, Balabac, and 416 

Brooke’s Point in the south, and in the municipalities of Taytay, Coron, Busuanga, Culion, El Nido, 417 

Aracelli, and Dumaran in the north. In Puerto Princesa City, the greatest concentration of mangroves 418 

is generally found in Puerto Princesa Bay, Honda Bay, Ulugan Bay, and Turtle Bay.   419 
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 420 

Figure 3. Spatiotemporal distribution of mangroves in Palawan in a span of 32 years from 1988 to 421 

2020.   422 
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The classified maps from 1988–2020 showed that the largest area of mangroves in Palawan was 423 

recorded in 2020 (60,033.8 ha) while the year 1998 (48,745.3 ha) had the least extent (Figure 3). The 424 

lower total area calculated for 1998 is likely due to misclassification as a result of minor cloud patches, 425 

especially in the northern part of Palawan. Our estimate for this year, however, does not deviate too 426 

far from the estimates in 1993 (50,045.3 ha) and 2003 (52,961.5), respectively.  427 

 428 

 429 

Figure 4. Composite representation of area statistics of mangroves in Palawan (left y-axis), Puerto 430 

Princesa City, Taytay, and Aborlan (right y-axis).  431 

 432 

In consideration of the funder of this study, we also separately quantified the mangrove extents in 433 

Puerto Princesa City, Aborlan, and Taytay. Two of the GCRF BC’s smaller geographical case study 434 

areas (barangay) were located in Aborlan municipality while Puerto Princesa City and Taytay 435 

municipality both had four case study locations each. Among these three major boundaries, Taytay 436 

had the largest mangroves cover followed by Puerto Princesa City and Aborlan (Figure 4). The 437 

mangrove areas in Taytay showed an increase since 1988 (3,865.1 ha) and peaked in 2008 (7,591.8 438 

ha) before the trend showed a gradual decrease until the most recent estimate, in 2020 (7,103.6 ha). 439 

Similarly, the mangroves in Puerto Princesa City also exhibited a pattern of increase from 1988 440 

(2,876.3 ha) and reached the highest records in 2008 (6,621.4 ha) and 2013 (6,738.1 ha) before the 441 

total estimates dropped. Unlike the two previous locations, the mangrove forests in the municipality 442 

of Aborlan demonstrated an increasing trend from 1993 (1,287.7 ha) to 2020 (1,839.7 ha). However, 443 
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the total mangrove area in Aborlan accounts for only about <25% and <30% of the overall mangrove 444 

forest covers in Taytay and Puerto Princesa City, respectively.  445 

 446 

One of the most challenging aspects of classifying the non-mangrove areas in this study was the areal 447 

immensity of Palawan. The largest estimate for non-mangrove areas was recorded in 1998 at 448 

1,375,197.7 ha (Figure 5). Mainly, the non-mangrove areas identified were highland and lowland 449 

forests, agricultural areas, and built-up areas (e.g., residential and industrial areas in rural and urban 450 

localities). A trend of decrease in non-mangrove areas was evident from 1998 to 2020 (1,363,909.2 451 

ha). The smallest change, at approximately 250 ha, was recorded between 2018 (1,364,168.1 ha) and 452 

2020.  453 

 454 

Figure 5. Estimated total cover of non-mangrove areas in Palawan from 1988 to 2020. 455 

 456 

To visualize the mangrove forests extents in Palawan across the different time periods, which used 457 

different techniques and resources, the result of this study particularly for the years 2020, 2018, and 458 

2013 were presented along with other previous estimates. As shown in Figure 6, our estimates for the 459 

total areal extent of mangrove forests in Palawan are similar to other estimates from 1992–2015, 460 

except for the estimate of [89] at only 43,000 ha which was the lowest among all the gathered data. 461 

In the 1990s, the earliest records of mangrove estimates were obtained by the Japan Forest and 462 

Technology Association [90] and NAMRIA. Our current estimate for 1993 (50,045.3 ha) was quite 463 

lower compared with the previous records of DENR-JAFTA [90] and NAMRIA at 50,602 ha and 464 

51,346 ha, respectively. However, our estimate for 1998 (48,745.3 ha) had about 5% margin with the 465 

NAMRIA’s record (51,346 ha). In 2005, the PCSDS utilized the Satellite Pour I’Observation de la 466 

Terre (SPOT) satellite sensor’s images to delineate the extent of mangroves in Palawan and generated 467 

approximately 58,400 ha. Based on the mangrove data extraction made by [91] from the Global 468 
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Mangrove Watch (GMW), in accordance with the same mangrove areal estimates that were originally 469 

created by [92], the GMW figures from 2007–2010 had a very slight difference with the 2008 estimate 470 

(53,877 ha) for this study. Unsurprisingly, among all the references cited in this study, NAMRIA 471 

recorded the highest estimates at 63,532 ha in 2010 [15] which was higher than the GMW data in the 472 

same year (53,731 ha) and even higher than our most recent estimate for 2020. Our current study 473 

revealed a minor difference in the increase of mangrove forests, showing at least 59,774.2 ha in 2018 474 

and 59,9925.8 ha in 2020, respectively (Figure 6). Surprisingly, the mangrove forests assessment of 475 

[18] revealed a sudden decrease in mangrove areas in just a year span. Our estimates for 2013 at 476 

55,302.4 ha had a minor margin of difference with the approximation obtained by [18]. 477 

 478 

 479 

 480 

Figure 6. Representation of mangrove forest areas in Palawan based on the previous estimates (gray 481 

bars) and the results of this study (blue bars). 482 

 483 

The result of mangrove forest covers we obtained in 1993 (1,287.7 ha) for Aborlan was comparably 484 

lower than the estimation made by [93] in 1992 (1,494.8 ha). However, a small gap in the estimated 485 

values was determined between the work of [93] in the same period and this study in 1998 (1,591.8 486 

ha; Table 2). Additionally, this study estimated the mangrove forests in Aborlan in 2008 at about 487 

1,676.6 ha which was higher than the GMW data (1,341.3 ha). Although the interval of years was 488 

relatively small between 2010 to 2013, the assessment made by [94] in 2010 at 1,202 ha was distinctly 489 
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lower than the estimates from GMV [92] and our result for 2013 (1,842.5 ha). Unsurprisingly, from 490 

the time periods 2013 to 2018, the GVM data for 2015 and 2016 [92] are similar when in fact 491 

variations in areal changes were evident between 2013, 2014, and 2016. However, all the assessments 492 

reported for Aborlan revealed a similar pattern where mangrove forests cover increased from 493 

inclusive time periods 1992, 1993, 1998, 2010, 2013, 2014, and 2016.  494 

 495 

Table 2. Comparison of mangrove forest areas in Taytay, Aborlan, and Puerto Princesa City based 496 

on the previous estimates and the results of this study. The ‘*’ symbol denotes the estimates from this 497 

study. The GMW estimates were sourced from [91] and are based on the measurements by [92].  498 

Year (Reference) 

Mangrove Forest Cover (Ha) 

Puerto 

Princesa City 
Taytay Aborlan 

1992 [93] - - 1,494.8 

1993 - - 1,287.7 

1998 5,634.2* - 1,591.8* 

2003 5,922.7* - - 

2003 [27] 3,201.8 - - 

2007 [91] 5,839.8 6,727.1 1,340.7 

2008 [91] 5,835.7 6,714.2 1,341.3 

2008 6,621.4* 7,591.8* 1,697.6* 

2009 [91] 5,816.3 6,713.2 1,341.3 

2010 [94] 4,020.0 1,578.0 1,202.0 

2010 [91] 5,773.3 6,715.5 1,341.3 

2013 [27] 4,577.2 - - 

2013 6,738.1* 7,351.5* 1,842.5* 

2014 [93] - - 1,866.8 

2015 [91] 5,754.8 6,601.0 1,337.2 

2016 [94] 5,668.0 3,905.0 1,655.0 

2016 [91] 5,754.8 6,601.0 1,337.2 

2018 6,709.4* 7,285.1* 1,740.3* 

2020 6,601.8* 7,103.6* 1,839.7* 

 499 

In the municipality of Taytay, our estimated result obtained in 2008 has close margin of difference 500 

from the GMW data. However, our estimates for 2013 (7,351.5 ha) and 2018 (7,103.6 ha) 501 

unsurprisingly differed significantly from the data gathered by [94] in 2010 (1,578 ha) and 2016 502 

(3,905 ha; Table 2). Similar interpretation goes on the data by [94] in 2010 and from the GMW report 503 

in the same year where the former generated a very low estimate (1,578 ha) against the latter figure 504 

of 6,715.5 ha.  505 

 506 
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[27] estimated the total mangrove forests extent in Puerto Princesa City at 3,201.8 ha. It was lesser 507 

than our calculated results for 1998 (5,634.2 ha) and 2003 (5,922.7 ha), respectively (Table 2). On 508 

separate assessments, [94], [92], and [27] recorded 4,020 ha, 5,773.3 ha, and 4,577.2 ha of mangrove 509 

forests in 2010 and 2013. We obtained a relatively higher estimate in 2013 (6,738.1 ha) compared 510 

with [27] in the same year. We only observed an almost 100 ha difference between the estimates of 511 

[94] in 2016 and the quantified extent made by [92] in the same year. However, between 2016 and 512 

2020, an almost 1,000 ha difference was observed between the previous and current estimates. 513 

 514 

3.2. Accuracy Assessment 515 

 516 

Using the 2010 LU/LC NAMRIA map as our ground reference data, the mangrove classification 517 

accuracies for years 1988, 1993, 1998, 2003, 2008, 2013, 2018, and 2020 were generated. The 518 

comparative accuracy measurements yielded satisfactory agreements across all the years. The highest 519 

and lowest overall accuracies and Kappa coefficient values for the mangrove forest class were 520 

produced in 2020 (92.90% and 0.91) and 1993 (86.66% and 0.73) classification maps, respectively 521 

(see Supplementary Information). The highest and lowest user’s accuracy in the classification of 522 

mangrove forest features were generated in the years 2003 (95.76%) and 1993 (86.04%). These 523 

suggest the commission errors of 4.24% and 13.96%, in which the pixels identified in the map as 524 

mangrove forest class actually represent an incorrect class based on a reference image. On the other 525 

hand, the generated producer’s accuracy quantifies the probability that a pixel was classified as 526 

something other than that class. The year 2013 yielded the highest producer’s accuracy (6.73% 527 

omission error) and the eras of 1998 and 1993 were at the lowest rank (11.80% and 11.56% omission 528 

errors). We presumed that the low overall accuracy and Kappa coefficient values generated for 1993 529 

were due to the poor satellite image quality. During this period, the cloud covers in two of the six 530 

scenes (refer to the Supplementary Information Table 2: WRS Path 116/Row 052 [cloud cover=3, 531 

cloud land cover=13] and WRS Path 118/Row 054 [cloud cover=8, cloud land cover=20]) made 532 

marginal spectral confusion between different features. Generally, our classifications only produced 533 

<15% commission and omission errors for both mangrove forest and non-mangrove area classes (see 534 

Supplementary Information).   535 
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3.3. Mangroves Change Detection  536 

 537 

We carried out change detection analysis for mangroves in Palawan by comparing multiple years in 538 

discrete intervals (e.g., 10–year gap, 7-year gap). The results of the change detection statistics within 539 

the four-time periods (1988–1998, 1998–2008, 2008–2018, 2013–2020) showed that the mangrove 540 

extents in the Palawan dramatically increased for the last 32 years (Figure 4, Table 3). The periods 541 

with the greatest change in mangrove forest extents in Palawan were recorded in 2008–2018 and 542 

1998–2008, showing at least 10.95% (5,897.7 ha) and 10.53% (5,131.9 ha) increase since the time 543 

periods 1998 to 2018 (Table 3, Figure 7a & 7b). However, we also noted the reduction in mangrove 544 

forest cover during the time period 1988–1998 at 5.24% (2,692.9 ha) loss. Although this decrease 545 

might imply disturbance in the mangrove ecosystems in the study area, we did not exclude from our 546 

conclusion that this figure could be attributed to the spectral confusion of the different classes during 547 

the classification stage (see Supplementary Information). 548 

 549 

Table 3. Changes in mangrove forest distribution in Palawan during (a) 1988–1998, (b) 1998–2008, 550 

(c) 2008–2018, and (d) 2013–2020. The percentage of reduction or increase in mangrove extents in 551 

each region was quantified based on the calculation used by [65]: (Sj–Si)/Si  x 100, where Sj and Si 552 

represent the total areas in each categorical class in the ith and jth time periods. The symbol ‘▲’ 553 

denotes the percentage and areal change of increase in mangrove forests while the decrease is denoted 554 

by the symbol ‘▽’, respectively.  555 

Time 

Period 

Palawan Puerto Princesa  Taytay Aborlan 

Area (Ha) % Area (Ha) % Area (Ha) % Area (Ha) % 

1988-1998 2,692.9 ▽ 5.24 ▽ 2,757.9 ▲ 95.88 ▲ 2,138.3 ▲ 55.32 ▲ 228.4 ▲ 16.75 ▲ 

1998-2008 5,131.9 ▲ 10.53 ▲ 987.2 ▲ 17.52 ▲ 1,588.4 ▲ 26.46 ▲ 105.8 ▲ 6.65 ▲ 

2008-2018 5,897.7 ▲ 10.95 ▲ 88.0 ▲ 1.33 ▲ 306.7 ▽ 4.04 ▽ 105.6 ▲ 6.22 ▲ 

2013-2020 4,731.4 ▲ 8.56 ▲ 136.3 ▽ 2.02 ▽ 247.9 ▽ 3.37 ▽ 2.8 ▽ 0.15 ▽ 

 556 

Concurrently, the mangrove forests cover in Puerto Princesa City showed a sharp increase from 1988 557 

to 1998 at about 2,757.9 ha (95.88%). However, unlike the increasing trend in Palawan in 2013–2020, 558 

the percentage of change at 2.02% (136.3 ha) in the mangrove forests cover in Puerto Princesa City 559 

on the same time period showed a slight decrease. Most of the mangroves in Puerto Princesa City 560 

were found in the eastern seaboard of the study area, forming dense and narrow canopies along the 561 

riverbanks, estuarine regions, and margins of the bays, particularly in Honda Bay, Puerto Bay, and 562 

Turtle Bay. The only notable concentration of mangroves in the western seaboard of Puerto Princesa 563 

City was found in Ulugan Bay (Figure 7c).  564 

 565 
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Similarly, the municipality of Taytay also established an increase from the time periods 1988–1998 566 

and 1998–2008 with the percentage of increase at about 55.32% (2,138.3 ha) and 26.46% (91,588.4 567 

ha), respectively (Table 3). Since 2008, the mangroves in this region suffered a consecutive loss, 568 

particularly with the reducing rates of 4.04% and 3.37% in 2008–2018 and 2013–2020, respectively. 569 

Despite this decrease, the mangrove extent in Taytay remained relatively higher than Puerto Princesa 570 

City and Aborlan (Figure 3). These mangroves were mostly concentrated in Taytay Bay and along 571 

the Malampaya Sound area. The thick mangrove assemblages within the inner south-eastern portion 572 

of the Malampaya Sound were notable in the classified map. Furthermore, mangroves were seen 573 

forming boundaries along the coastlines of smaller and larger islands in Taytay Bay, especially in the 574 

north-eastern part of the bay (Figure 7d). 575 

 576 

In comparison with the mangrove forests in Taytay and Puerto Princesa City, the municipality of 577 

Aborlan only suffered a small loss in mangrove assemblages during 2013–2020 (0.15%, 2.8 ha; Table 578 

3). For the period of 20 years, the mangrove forests cover in Aborlan increased although the extent 579 

of expansion was relatively lower than Puerto Princesa City and Taytay. Despite the similarities in 580 

the pattern of changes in Palawan, we did not exclude the possibility that the variations in tidal 581 

inundation and the time of the data acquisition may influence the estimations. Although we did not 582 

exclude the possibility that mangroves can also be found in the western seaboard of Aborlan, for this 583 

study we only recorded the mangroves in the eastern seaboard portion. Notably, the small islands of 584 

Puntog and Malunot generally had thick mangrove assemblages (Figure 7e).  585 

 586 

There was a clear pattern of change in non-mangrove areas in Palawan from 1988 to 2020. An 587 

increasing trend was seen from 1988 to 1998 before a spike of decrease happened. The evidence of 588 

decreasing trend continued from 2003 to 2020 (Figure 4). We assumed that these changes incorporate 589 

growth in closed-forest areas and the residential, industrial, and agricultural developments in the 590 

region. Moreover, we also presumed that tourism growth and infrastructure expansion projects (e.g., 591 

construction of national roads or highways) play a critical role in the elaborated expansion of non-592 

mangrove areas in Palawan.  593 

 594 

 595 

  596 
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 597 

Figure 7. Changes in mangrove forests in Palawan from 1988 to 2020.  598 
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Figure 7. (Continued…) 599 

  600 
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Figure 7. (Continued…) 601 

  602 
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Figure 7. (Continued…) 603 

  604 



 27 

Figure 7. (Continued…) 605 

  606 
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3.4. Mangrove Forests Projection and Model’s Accuracy 607 

 608 

The Markov’s transition probability matrix was generated for the two time periods, 1988–1993 and 609 

2013–2020 (see Supplementary Information). These numbers suggested the probabilities of change 610 

in mangrove forest and non-mangrove area classes in Palawan. The projected areal extent of 611 

mangroves for 2013 (52,414.5 ha) slightly corresponds with the observed 2013 extent at 51,438.2 ha 612 

(Figure 8a), which indicated fewer variations between the two datasets. For this instance, we 613 

confirmed that the transition matrices between 1988 and 1993 could be effective for predicting the 614 

dynamics of change in the mangrove forests and non-mangrove areas in Palawan.  615 

 616 

We found that the mangrove forests in the region will likely increase by 8.18% (64,946.3 ha) and 617 

11.56% (66,972.1 ha) in the years 2030 and 2050 (Figure 8c). Conversely, it was projected that the 618 

non-mangrove areas in Palawan were likely to reduce by 4.53% (1,302,149.6 ha) and 7.21% 619 

(1,265,498 ha) in 2030 and 2050, respectively (Figure 8d). There was a slight increase in mangrove 620 

forests in Palawan for the simulated time period 2030 (64,946.3 ha) compared with 2013 (52,414.5 621 

ha) and 2050 (66,972.1 ha; Figure 8a, Figure 8c). 622 

 623 

      624 
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    625 

Figure 8. Projected probability of changes in mangrove forests and non-mangrove areas in Palawan.  626 
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The result of the accuracy assessment using the time period 1988–1993 and the projected 2013 output 628 

was evaluated using a 𝜒2 test, indicating a value of 150.8 which was larger than 3.841 for the critical 629 

level of p=0.05 with (2–1)2 degrees of freedom. This suggests that the hypothesis of statistical 630 

independence for the data was rejected. Therefore, predictive modelling using the Markov Chain can 631 

be used for forecasting mangroves in Palawan.  632 

 633 

4. DISCUSSION 634 

 635 

The course of major development in Palawan was started in 1981 with the implementation of the 636 

Palawan Integrated Area Development Project [95]. Following the acquisition of Landsat data for 637 

1988 in this study, this major project has been almost completed. Therefore, we deemed that this 638 

condition serves as a good baseline of information to envisage the changes in land use patterns in 639 

Palawan. But perhaps, the major framework for all development undertakings in Palawan was the 640 

passage of the Republic Act 7611 known as the SEP for Palawan Act in 1992. Within this law, the 641 

spatial basis for the implementation of its main goal is the Environmentally Critical Areas Network 642 

(ECAN) Zonation Project [96].  643 

 644 

The strategic approach of ECAN is composed of three main components: terrestrial, coastal/marine 645 

zones, and tribal ancestral lands. The multiple utilizations of every resource within these components 646 

are defined according to different zones, particularly within the multiple/manipulative zone and 647 

buffer zone. The buffer zone is further divided into three distinct zones where the level of restriction 648 

in resources extraction differs. The buffer zone is comprised of restricted use area (i.e., where limited 649 

non-consumptive activities may be allowed as long as they will not impair the ecological balance), 650 

controlled use area (i.e., activities such as mining, logging, tourism development, research, and other 651 

minor resources extraction may be allowed to operate but must be strictly in compliance with the 652 

law), and traditional use area (i.e., located along the edges of intact terrestrial forests where traditional 653 

use has already been established). The intensive utilization of land use in Palawan is clearly defined 654 

under the multiple/manipulative use zone areas [97, 98]. Due to the ECAN zoning strategy, multiple 655 

land-use areas in Palawan have been assessed, marked, and delineated based on their biophysical or 656 

natural and anthropogenic attributes to regulate activities, sustain the ecological integrity, and 657 

properly manage the carrying capacity [45].  658 

 659 

[30] and [99] asserted that the economic growth and the augmentation of the human population are 660 

two major factors that influence the changes in the extent of mangrove forests and other land use 661 

areas. In Puerto Princesa City specifically, where the greatest housing development projects in 662 
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Palawan are generally concentrated, the conception of the city’s housing project in 1992 had managed 663 

to transform different land use across its boundaries. For example, the multiple housing projects in 664 

Barangay Sicsican, Mangingisda, San Jose, San Manuel, Bahile, Tagburos, Sta. Cruz, and Bahile, 665 

converted hundreds of hectares of collective land use areas into residential space. Although this 666 

number seems fairly alarming, the local government of Puerto Princesa City asserted that these 667 

initiatives could promote the smooth spatial expansion of the migration of mangroves in the future 668 

because most of the relocated local residents were previously inhabiting within the adjacent areas 669 

where mangroves are located [100].  670 

 671 

Prior to the declaration of the protected area networks in Palawan, in 1981 and 1991, the mangrove 672 

areas in the province including the adjacent parcels of mangrove forests in the county were estimated 673 

at 74,267 ha [101]. Following the time after the integration of SEP law in Palawan in 1992, the 674 

mangrove areas changed significantly [17] with at least 50,045 ha remaining areas in 1993 (Figure 675 

4). In contrast, a significant decrease of non-mangrove areas, which was notably recorded from this 676 

study from 1998 to 2018 (Figure 5), coincides with the time periods where massive deforestation in 677 

the southern part of Palawan led to the reduction in the areal size of the forested areas during 2003–678 

2010 [102]. Explicitly, we have found a significant increase in non-mangrove areas between 2013 679 

and 2020 which was approximately three years after the implementation of the National Log Ban and 680 

the institutionalization of an Anti-Illegal Logging Task Force in 2011. Interestingly, according to the 681 

report of DENR [103], among all the provinces in the Philippines, Palawan had the largest areal extent 682 

of forestland in 2020, totalling about 1,035,926 ha. We had identified that this study poses limitations 683 

against the generated results about the non-mangrove area class because we only referred to the 684 

generalization of spectral separability. For this instance, we recommend that future similar studies 685 

should also focus on the spatial dynamics of multiple LU/LC areas. 686 

 687 

Based on a joint venture initiative by NAMRIA and JAFTA in 1992, an aerial survey was conducted 688 

in Palawan. Among the notably remotely sensed information they obtained were the evidence of 689 

small-scale logging activities, particularly in Taytay, and the slash and burn cultivation “Kaingin” in 690 

the central boundary of Puerto Princesa City (e.g., Honday Bay, Ulugan Bay; Figure 8b) and across 691 

the municipalities of San Vicente and Taytay [90]. [96] further reported that a massive extraction of 692 

mangrove raw products for fuelwood consumption was rampant in Taytay. These anthropogenic 693 

stresses were assumed to cause changes in the land use/land cover areas in the northern part of the 694 

island during the pre- and post-establishment of a marine reserve within a small portion of the north-695 

western tip of mainland Palawan (e.g., Bacuit Bay in El Nido municipality) in 1991.  696 

 697 
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However, following the expansion of the protected areas in northern Palawan (e.i., extension for 698 

1991-declared Bacuit Bay marine reserve) under the establishment of the El Nido-Taytay Managed 699 

Resources Protected Area in 1998 [104], the results obtained from this study (i.e., Figure 7c), suggests 700 

as the reason for an increasing trend in mangrove forests cover in Taytay. Correspondingly, about an 701 

8.7% increase in old-growth forest coverage in the protected area of Bacuit Bay has been reported a 702 

year after it become fully protected under the law in 1991 [105]. Moreover, [96] reported that two 703 

endemic mangrove species in the Philippines namely, Rhizophora stylosa and Compostenum 704 

philippinnensis, were abundant in the Northern Part of Palawan including Taytay. For this reason, we 705 

supposed that the abundance of their presence in this region contributes to the successful protection 706 

and recovery of mangrove forests.  707 

 708 

[91] recently reported that communities interviewed generally perceived mangrove condition in 709 

Palawan had improved over the last 10 years. [91] reported that the perception of the local 710 

communities in Taytay, in reference with the mangrove forest ecosystem quality in their area, 711 

suggested no change in condition compared with the findings from this study that showed a decrease 712 

in extent over the past 10 years, although it is apparent that the extent has increased significantly over 713 

the interviewee’s lifetime. Similarly, [91] reported that the communities in Aborlan and Puerto 714 

Princesa City perceived an improvement in mangroves over the last 10 years This study indicates 715 

while there was a gain in mangrove extent between 2008-2013, since 2013 there has been slight 716 

decline in mangrove cover or cover has remained stable in these areas (Figure 6, Table 3).  717 

 718 

The discrepancy in these results could be attributed to the reputation of Palawan for having still 719 

relatively high mangrove forest cover in comparison with the other provinces in the Philippines. The 720 

positive outlook of the local communities may be influenced by the environmental regulatory 721 

conceptions where they think that the province has strict regulated forest activities since the entire 722 

mangrove forests in the study area are located within the existing protected area networks (i.e., IUCN, 723 

SEP Law, ECAN Zoning Project). Also, because local communities were actively involved in yearly 724 

“mangrove tree planting” activities across Palawan, for example, the local government of Puerto 725 

Princesa City has already planted around 800,000 mangroves since 2003 [106], they presume that 726 

this type of activity is a good indicator of a successful mangrove management. However, there was 727 

still no local studies that investigate whether the different mangrove rehabilitation programmes in 728 

Palawan are successful or not. It is also likely that, since this study used lower-to-moderate resolution 729 

satellite data, the ability to detect young mangroves that are small and sparce (i.e., sapling) is low so 730 

these areas may not be included in the extent figures. The perceptions of interviewees may also 731 
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indicate improvements in mangrove condition and health, rather than simply on extent of mangrove 732 

coverage, which is information harder to attain by remote sensing.  733 

  734 

On the other hand, we presumed that a large percentage of change in non-mangrove areas in Palawan 735 

could be attributed to the progressive changes of other ground features in the region (e.g., 736 

deforestation, forest regeneration, infrastructure, industrial, and residential developments). For 737 

example, in Puerto Princesa City alone, a large portion of non-mangrove area in the outskirt region 738 

of Barangay Sta. Lourdes, which was previously a part of higher elevated grassland/bushland region, 739 

has been converted into a sanitary landfill. Also, we have noted that the projected changes in the non-740 

mangrove area class might be attributed to the mining activities in the southern Palawan, particularly 741 

in the municipalities of Bataraza, Brooke’s Point, Aborlan, and Narra. Another contributing element, 742 

which we assumed could have a large contribution to the changes in non-mangrove areas in Palawan, 743 

was the inception of the Philippine government’s infrastructure-growth-targeting program known as 744 

‘Build! Build! Build’, which was started in the last quarter of 2016. Major highways, roads, and 745 

bridges have been expanded or re-constructed across the country, including Palawan, which led to 746 

the conversion of other land use areas. We expected that this type of development will continue to 747 

transform landscape patterns in Palawan until the end-term of the current government administration. 748 

Lastly, an increase in non-mangrove areas for the years 2030 and 2050 was also expected due to the 749 

influence of tourism demand in Palawan. As the global COVID-19 pandemic starts to shift to an 750 

endemic approach, the tourism industry in the province is now gradually gaining momentum. For 751 

example, such type of situation spurred global interest to visit/revisit the region’s historical and 752 

applauded tourism sites which were restricted for almost two years due to the global outbreak of 753 

COVID-19.  754 

 755 

The largest projection increment in mangrove aerial extents was recorded in the next 30 years in 2050. 756 

We expected this evaluation following the assumption where the current ‘Build! Build! Build!’ 757 

program of the Philippine government could catch up with rapid urbanization and population growth, 758 

which could potentially facilitate the optimization of mangrove forests protection in the province. 759 

This is because we assumed that relocating the local residents living within the coastal areas could 760 

lessen the threat to the mangrove ecosystem and foster community growth. 761 

 762 

5. CONCLUSIONS 763 

 764 

Our study demonstrates the capability of Markov chain model in predicting the future expanse of 765 

mangrove forests in Palawan using the multi-date Landsat satellite images from 1988 to 2020. This 766 
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study found that in all study areas mangrove extent has increased from 1988 levels, although the 767 

trajectories since 2008 are more variable. Our analysis has shown the high likelihood of an increase 768 

in areal extent of mangroves in Palawan, from our most recent estimate in 2020 (60,033.8) ha) up to 769 

the years 2030 (64,946.3 ha) and 2050 (66,972.1 ha). However, these projections should be 770 

considered a baseline and must be interpreted with caution, as this work did not integrate 771 

environmental factors that may or had influenced the changes in mangrove forests. For this instance, 772 

it would still be good to view that mangrove forests remain in constant threats especially in the context 773 

of the global climate change. The impact mechanism of sea level rise on mangroves presses on with 774 

as the greenhouse gas emissions continue. Furthermore, other threats such as coastal conversion, 775 

water pollution, and raw products extraction are not slowing down and remain potentially impacting 776 

the mangrove ecosystems worldwide. Integrating mangrove forest projection at regional scales is 777 

vitally important to determine specific resiliency response to climate change impacts.  778 

 779 

The potential of the Markov chain model to project the potential changes of mangrove forests and 780 

other land use areas conveys its importance in the future, especially in the contexts of landscape 781 

management, ecological sustainability, and policy intervention. However, since we did not create this 782 

type of model to directly assess our current policies, we recommend that future research should 783 

integrate the Cellular Automata-Markov model since it provides land cover data needed at different 784 

time steps (i.e., pre- and post-policy intervention) (e.g., [42]). This way, research bodies can evaluate 785 

the impacts of different policies (e.g., 1992 SEP Law, 1981 Mangrove Swamp Forest Reserve) in the 786 

future state of mangroves in Palawan. Markov Chain Cellular Automata Further, it would be good to 787 

conduct a similar study but should also focus on the assessment of different LU/LC patterns to 788 

determine whether the demand of development that spurs the decrease or increase of certain features 789 

of non-mangrove areas is beneficial to the environment or not. This approach might alleviate 790 

uncertainties about the state of other multiple land-use areas in Palawan, other than mangrove forest, 791 

and the potential changes can be dissected and utilized for more effective management applications.  792 

 793 

It would also be necessary to investigate the pressures of different socio-economic activities of village 794 

communities on the extent of mangrove forests within the different multiple zones (i.e., based on 795 

ECAN Zoning Project) as changes in the distribution and intensity of these activities in response to 796 

social and economic drivers have the potential to contribute to changes in LU/LC areas. Given all the 797 

other driving factors that could influence the changes of mangrove forest cover in Palawan, we further 798 

encourage the implementation of spatio-statistical modelling techniques in the future, where the 799 

changes in land-use areas are to be fitted with environmental covariates. We think that this type of 800 

approach is timely, relevant, cost-effective and could enable the evaluation of different management 801 
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interventions and policies not only in Palawan but also in the Philippines and neighbouring Southeast 802 

Asian countries. 803 

 804 

  805 
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 1371 

Landsat Sensors Used 1372 

 1373 

The multi-temporal resolution and multi-spectral Landsat 4-5 Thematic Mapper (TM), Landsat 7 1374 

Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) sensors 1375 

were utilized for this study. The different ranges of frequencies along with the electromagnetic (EM) 1376 

spectrum for TM, ETM+, and OLI are summarized in Table 1.  1377 

 1378 

Table 1. Summary of band designations and spatial resolution for TM, ETM+, and OLI [1]. The 1379 

empty cells correspond to the unavailability of the sensor for a particular feature. ‘B’ represents the 1380 

band number and the corresponding wavelength range, enclosed in a parenthesis, and in a micrometer 1381 

unit. 1382 

Sensor 
Landsat 4-5 

TM 

Landsat 7 

ETM+ 
Landsat 8 OLI 

Spatial 

Resolution 

Coastal aerosol - - B1 (0.43-0.45) 30 m 

Blue B1 (0.45-0.52) B1 (0.45-0.52) B2 (0.45-0.51) 30 m 

Green B2 (0.52-0.60) B2 (0.52-0.60) B3 (0.53-0.59) 30 m 

Red B3 (0.63-0.69) B3 (0.63-0.69) B4 (0.64-0.67) 30 m 

NIR B4 (0.76-0.90) B4 (0.77-0.90) B5 (0.85-0.88) 30 m 

SWIR 1 B5 (1.55-1.75) B5 (1.55-1.75) B6 (1.57-1.65) 30 m 

SWIR 2 B7 (2.08-2.35) B7 (2.09-2.35) B7 (2.11-2.29) 30 m 

Thermal 

B6 (10.40-

12.50) 

B6 (10.40-

12.50) 

B10 (10.60-

11.19) 
30 m 

- - 
B11 (11.50-

12.51) 
- 

Pan-Chromatic - B8 (0.52-0.90) B8 (0.50-0.68) 15 m 

Cirrus - - B9 (1.36-1.38) 30 m 

 1383 

Sourced Dataset 1384 

 1385 

The TM, ETM+ and OLI datasets in multiple years 1988, 1993, 1998, 2003, 2008, 2013, 2018, and 1386 

2020 were sourced using the Semi-Automatic Classification Plugin (SCP) version 7.9.0 Matera in 1387 

Quantum Geographical Information System (QGIS) version 3.22.1 Białowieża (Table 2). 1388 

  1389 
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 1390 

Table 2. Details of acquired Landsat satellite data were selected for this study. For satellite sensors, 1391 

the multispectral Landsat 4–5 is denoted by ‘TM’, the Landsat 7 Enhanced Thematic Mapper Plus is 1392 

denoted by ‘ETM+’, and the ‘OLI’ stands for Landsat 8 Operational Land Imager. The spatial 1393 

resolution for each satellite image is denoted by ‘SRes’ and the ‘WRS’ means worldwide reference 1394 

system, indicated in path ‘P’ and row ‘R’. 1395 

Satellite 

sensor 

Acquisition date 

(mm/dd/yy) 

SRes 

(m) 

WRS 

P/R 

Satellite 

sensor 

Acquisition 

date 

(mm/dd/yy) 

SRes 

(m) 

WRS 

P/R 

TM 03/12/1988 30 115/053 ETM+ 01/14/2003 30, 15 118/054 

TM 01/31/1988 30 116/052 ETM+ 01/23/2008 30, 15 115/053 

TM 04/20/1988 30 116/053 ETM+ 04/19/2008 30, 15 116/052 

TM 06/30/1988 30 117/053 ETM+ 10/12/2008 30, 15 116/053 

TM 09/18/1988 30 117/054 ETM+ 04/10/2008 30, 15 117/053 

TM 01/29/1988 30 118/054 ETM+ 10/03/2008 30, 15 117/054 

TM 11/05/1993 30 115/053 ETM+ 04/01/2008 30, 15 118/054 

TM 12/14/1993 30 116/052 ETM+ 10/19/2013 30, 15 115/053 

TM 05/20/1993 30 116/053 ETM+ 02/28/2013 30, 15 116/052 

TM 10/27/1993 30 116/053 ETM+ 05/19/2013 30, 15 116/053 

TM 07/14/1993 30 117/053 ETM+ 03/07/2013 30, 15 117/053 

TM 06/12/1993 30 117/054 ETM+ 06/27/2013 30, 15 117/054 

TM 03/15/1993 30 118/054 ETM+ 05/01/2013 30, 15 118/054 

TM 11/10/1993 30 118/054 OLI 12/12/2013 30, 15 115/053 

TM 01/03/1998 30 115/053 OLI 08/29/2018 30, 15 116/052 

TM 03/31/1998 30 116/052 OLI 02/18/2018 30, 15 116/053 

TM 03/31/1998 30 116/053 OLI 04/30/2018 30, 15 117/053 

TM 01/17/1998 30 117/053 OLI 12/10/2018 30, 15 117/054 

TM 01/17/1998 30 117/054 OLI 04/05/2018 30, 15 118/054 

TM 02/09/1998 30 118/054 OLI 04/05/2020 30, 15 115/053 

ETM+ 04/15/2003 30, 15 115/053 OLI 09/19/2020 30, 15 116/052 

ETM+ 02/17/2003 30, 15 116/052 OLI 09/19/2020 30, 15 116/053 

ETM+ 02/01/2003 30, 15 116/053 OLI 08/25/2020 30, 15 117/053 

ETM+ 03/12/2003 30, 15 117/053 OLI 08/25/2020 30, 15 117/054 

ETM+ 04/13/2003 30, 15 117/054 OLI 05/12/2020 30, 15 118/054 

 1396 

Accuracy Assessment 1397 

 1398 

Using the 2010 LU/LC NAMRIA map as our ground reference data, the mangrove classification 1399 

accuracies for years 1988, 1993, 1998, 2003, 2008, 2013, 2018, and 2020 were generated (Figure 1). 1400 

The training mangrove forest polygons were validated through the established testing samples and 1401 

the accuracy was assessed using the producer’s accuracy, the user’s accuracy, the overall accuracy, 1402 

and the Kappa coefficient values [2]. 1403 
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 1404 

1405 

 1406 

Figure 1. Classification error matrix of the Landsat TM, ETM+, and OLI data for multiple years, 1407 

1988, 1993, 1998, 2003, 2008, 2013, 2018, and 2020. The ground reference data used was the 2010 1408 

map derived from NAMRIA. The mangrove forests class is donated by ‘MF’ while the class of non-1409 

mangrove areas is denoted by ‘NMA’. Additionally, the measure of commission error (type 1 error) 1410 

is denoted by ‘CE’ while the omission error (type 2 error) is denoted by ‘OE’, respectively. 1411 

 1412 

Mangrove Forests Projection and Model’s Accuracy 1413 

 1414 

Based on the calculation of the transition probabilities of one system at time t2 with the state of the 1415 

system at time t1 according to the specific year [3, 4, 5], the Markov’s transition probability matrix 1416 

was generated for the two time periods, 1988–1993 and 2013–2020 (Table 3).  1417 

 1418 

Table 3. Calculated transitional probabilities during 1988–2020. 1419 
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Time Period Probability Matrix Mangrove Forests Non-Mangrove Areas 

1988-1993 
Mangrove Forests 0.531 0.469 

Non-Mangrove Areas 0.401 0.599 

2013-2020 
Mangrove Forests 0.548 0.452 

Non-Mangrove Areas 0.633 0.367 
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