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Abstract 

 

Arsenic exposure during pregnancy might affect foetal development. Arsenic metabolism 
may modulate the potential damage to the foetus. Tacna has the highest arsenic exposure 
levels in Peru. However, this region has the highest birth weight in Peru. It is not known 
if arsenic exposure is affecting maternal-perinatal health in Tacna. The study aimed to 
evaluate the association between urinary arsenic metabolism and birth outcomes, 
specifically birth weight and gestational age at birth in Tacna, Peru. A prospective cohort 
study was conducted, involving 158 pregnant women in Tacna, Peru, during January-
November 2019. Participants were enrolled in their second trimester and followed-up 
until birth. Urine samples were collected in the second and third trimester. Urine samples 
were analyzed for total arsenic concentration and its species. Generalized estimating 
equations (GEE) analysis was used to evaluate the association of interest. Inter-
differences in arsenic toxicokinetics, calculated with principal component analysis (PCA) 
was included as an interaction term. Analysis was stratified by pregnancy trimester. The 
median total urinary arsenic (tAs) concentration was 33.34 µg/L. Inorganic arsenic (iAs) 
and Dimethylarsinic acid (DMA) were higher in the second trimester. Dimethylarsinic 
acid (DMA) was the predominant component (84.78% of total urinary arsenic). No 
significant association was found between urinary arsenic exposure and birth weight or 
gestational age at birth. The association was not affected by arsenic metabolism. Stratified 
analyses by pregnancy trimester also showed no significant associations. Urinary arsenic 
was not associated with birth weight, and this null relationship remained unaffected by 
arsenic toxicokinetic differences reflected in urine.  

 

Keywords: Birth weight, Foetal development, Gestational age, Toxicity, Pregnant 
women, Latin America 

 

 

 



Introduction 1 

Arsenic is a naturally occurring element found in the earth's crust, soil, water, and air. It 2 
is a toxic substance and a known carcinogen, causing skin, lung, bladder, and kidney 3 
cancers.1 Arsenic is also known to have adverse effects on foetal and infant health.2 4 
Pregnant women who are exposed to high levels of arsenic are at an increased risk of 5 
adverse birth outcomes, including stillbirth, preterm birth (<37 weeks of gestational age), 6 
low birth weight (<2500 g at term), and congenital abnormalities.3 In recent years, there 7 
has been growing concern about the impact of arsenic exposure on maternal and child 8 
health. 9 

The ingestion of water containing high concentration of arsenic is one of the most 10 
common routes of exposure. It is estimated that 107 countries around the world are 11 
affected by high levels of arsenic in water 4, with groundwater being the most common 12 
source, although high levels are also found in surface water.5 Arsenic concentration in 13 
water can be very heterogeneous even in a same country, such as Bangladesh, with arsenic 14 
levels ranging from 90 to 4730 µg/L in tube-well water. 6 In Chile, at Bahía de Camarones, 15 
which is located near the city of Arica (border with Peru), drinking water inorganic 16 
arsenic levels of 48.7 – 1252 µg/L have been found, composed particularly of AsV.7  A 17 
study from our group has determined that around two-thirds of the Tacna (a province in 18 
southern Peru) pregnant women population is exposed to inorganic arsenic levels higher 19 
than 10 µg/L in tap water, of which 50% were exposed to >50 µ/L. 8 However, Tacna, 20 
despite the arsenic exposure context, it has showed the highest birth weight in Peru9, 10, 21 
as well as the lowest small for gestational age prevalence. 10 22 

Urinary arsenic and its metabolites are commonly used as biomarker of arsenic exposure 23 
in epidemiological studies.11 Arsenic and its metabolites are excreted primarily in urine, 24 
and urinary arsenic levels have been shown to correlate with the internal dose of arsenic 25 
exposure.11 Several studies have reported a significant association between maternal 26 
urinary arsenic levels and adverse birth outcomes, although the findings have been 27 
inconsistent across studies.3, 12 It is important to note that individuals have varying 28 
proficiencies in metabolizing arsenic, and this could modulate the potential damage to the 29 
fetus.13  30 

Given the potential health risks associated with arsenic exposure during pregnancy, there 31 
is a need for further research to better understand the impact of arsenic on maternal and 32 
child health. This study aims to evaluate the association between urinary arsenic 33 
metabolism and birth outcomes, specifically birth weight and gestational age at birth. 34 

 35 

Materials and methods 36 

Study design and study area 37 

We conducted a longitudinal cohort study during January-November 2019, in which a 38 
total of 158 pregnant women that lived in the province of Tacna, in their second trimester 39 
of pregnancy who attend to their antenatal care-controls were enrolled and followed-up 40 
until birth. The province of Tacna is in southern Peru, with a total area of 8,170 km2, and 41 
it is characterized for its desertic geography.  42 



Enrolment of participants and follow-up 43 

The recruitment of the pregnant women is described elsewhere.8 In brief, a total of 16 44 
health establishments within the 5 most populated districts in the province of Tacna were 45 
selected for the enrolment to take place. We were granted authorization to consult the 46 
prenatal health care record that included information about the date of last antenatal care 47 
consultation, gestational age by the time of consultation, age, address, and telephone 48 
number.  49 

To be considered as a potential participant for the study, the women were 18-40 years-50 
old, lived in Tacna for at least 5 years, and were pregnant for <24 weeks by the time of 51 
the recruitment. Eligible women were recruited via telephone call. Those invited to 52 
participate in the study were then visited in their homes or in the health establishment a 53 
total of 2 times for urine sampling. A final visit was scheduled after birth, in which data 54 
from their baby was collected, such as birth weight and gestational age at birth.  55 

Urine sampling and arsenic quantification 56 

One urine sample was taken in the second and third trimester of pregnancy. During the 57 
recruitment the women were given two sterile plastic flasks for urine specimen collection. 58 
They were asked to avoid consuming fish or seafood for the last three days prior the 59 
sampling. They were instructed in how to do the self-collection of the sample, indicating 60 
that they should eliminate the first few millilitres of the morning void. Once the sample 61 
was collected, participants were asked to store it in the freezer until the research personnel 62 
were able to collect them. The samples were transported at 4°C to the laboratory for 63 
storage. Samples were homogenized and then aliquoted in cryovials of 2 mL, and stored 64 
at -20°C. For arsenic quantification and speciation, the samples were delivered on dry ice 65 
to the LEADER laboratory at Emory University in Atlanta, GA, USA. Procedure is 66 
described elsewhere.14  67 

Statistical Analysis 68 

Descriptive statistics were used to display median with interquartile range for non-normal 69 
distributed data. Categorical variables are presented as absolute and relative frequencies. 70 
Arsenic species concentrations and their relative percent (%) are presented.  71 

Relative percent of the species were calculated as follows: 72 

%𝑖𝑖𝑖𝑖𝑖𝑖 =
[𝐴𝐴𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼] + [𝐴𝐴𝑠𝑠𝑉𝑉]

[𝐴𝐴𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼] + [𝐴𝐴𝑠𝑠𝑉𝑉] + [𝑀𝑀𝑀𝑀𝑀𝑀] + [𝐷𝐷𝐷𝐷𝐷𝐷]
 73 

%𝑀𝑀𝑀𝑀𝑀𝑀 =
[𝑀𝑀𝑀𝑀𝑀𝑀]

[𝐴𝐴𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼] + [𝐴𝐴𝑠𝑠𝑉𝑉] + [𝑀𝑀𝑀𝑀𝑀𝑀] + [𝐷𝐷𝐷𝐷𝐷𝐷]
 74 

%𝐷𝐷𝐷𝐷𝐷𝐷 =
[𝐷𝐷𝐷𝐷𝐷𝐷]

[𝐴𝐴𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼] + [𝐴𝐴𝑠𝑠𝑉𝑉] + [𝑀𝑀𝑀𝑀𝑀𝑀] + [𝐷𝐷𝐷𝐷𝐷𝐷]
 75 

where: 76 

[𝑖𝑖𝑖𝑖𝑖𝑖]: Inorganic arsenic concentration in urine 77 

[𝐴𝐴𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼]: Arsenite concentration in urine 78 



[𝐴𝐴𝐴𝐴𝑉𝑉]: Arsenate concentration in urine 79 

[𝑀𝑀𝑀𝑀𝑀𝑀]: Monomethylarsonic acid concentration in urine 80 

[𝐷𝐷𝐷𝐷𝐷𝐷]: Dimethylarsinic acid concentration in urine 81 

To compare total urinary arsenic and arsenic species concentration between the second 82 
and third trimester of pregnancy, we used Wilcoxon’s sign-rank test. We used Student’s 83 
t-test for paired observations to compare if  %iAs, %MMA and %DMA was different 84 
between pregnancy trimesters, after the normal distribution evaluation of the differences. 85 
We performed a principal component analysis (PCA) to characterize the main sources of 86 
variability in the urinary arsenic data and its species (arsenic toxicokinetics differences 87 
between pregnant women). The PCA was conducted on the concentration of urinary 88 
inorganic arsenic (iAs), monomethylarsonic acid (MMA) and dimethylarsinic acid 89 
(DMA). The principal components correlations and eigenvectors can be found in 90 
Supplementary Material 1. 91 

Arsenic exposure was considered as the residuals of the following model to remove the 92 
influence of organic arsenic from seafood on urinary total arsenic: 15, 16 93 

𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛽𝛽1 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝛽𝛽2 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 94 

Where. - 95 

𝑡𝑡𝑡𝑡𝑡𝑡: Total urinary arsenic (µg/L) 96 

𝐴𝐴𝐴𝐴𝐴𝐴: Arsenobetaine (µg/L) 97 

Generalized estimating equations (GEE) with Gaussian family analysis was employed to 98 
evaluate the association between arsenic and birth weight, and whether this association 99 
was affected by arsenic toxicokinetic differences between pregnant women. This same 100 
approach was applied to examine the association with gestational age at birth but scaling 101 
the variable arsenic exposure dividing it by 1000 for better interpretation, since 102 
coefficients were small. GEE analysis was then stratified by newborn sex. An analysis 103 
stratified by pregnancy trimester was performed using linear regression. Regression 104 
models were adjusted for mother’s age, pregestational body mass index and mother’s 105 
education level (as a proxy for socioeconomic status). All statistical analyses were 106 
conducted using STATA 17.0 software with a significance level of p < 0.05. 107 

Ethical aspects 108 

The study protocol was approved by Universidad Peruana Cayetano Heredia IRB (R-109 
29420-20). Informed consent was obtained from each participant. 110 

 111 

Results 112 

The study sample of pregnant women had a mean age of 28.15 years at the time of 113 
recruitment, and mean body mass index of 26.73 kg/m2 before pregnancy. Only five 114 
women (3.13%) declared to be smokers during pregnancy and 13 consumed alcohol 115 
(8.16%). Thirty-six of the women (22.50) were single mothers, and the sample had a high 116 
proportion of women with higher education (38.13%). In Table 1 we present the 117 



distribution of urinary arsenic species concentrations as median and interquartile range 118 
(IQR). Median total urinary arsenic (tAs) was 33.34 µg/L and ranged between 2.50 – 119 
167.48 µg/L. We observed variation in tAs across visits, being lower in visit 2. DMA was 120 
the most present arsenic component (84.78%). Water arsenic concentration distribution 121 
in the second and third trimester can be found in Supplementary Material 2, indicating 122 
that for the third trimester, pregnant women were mostly exposed to levels ≤10 µg/L 123 
(51.83% vs 29.56% in the second trimester), and there was a positive significant 124 
correlation between water arsenic and urinary DMA concentration in both trimesters. 125 

Table 1. Urinary arsenic species concentration and relative content across pregnancy. 
Arsenic 

specie (µg/L) 
Total Second trimester Third trimester p-value£ Median IQR Median IQR Median IQR 

tAs 33.34 30.58 41.57 33.95 28.32 20.67 <0.001 
AsIII 1.57 1.57 2.08 1.9 1.24 1.03 <0.001 
AsV 1.36 1.3 1.36 1.36 1.36 1.21 0.553 
iAs 2.99 2.8 3.54 2.99 2.68 2.03 0.001 
MMA 2.1 1.79 2.17 2.07 2.07 1.35 0.165 
DMA 28.36 26.86 35.55 29.06 23.36 16.75 <0.001 
Asb 2.37 2.55 2.64 3.05 2.09 2.24 0.002 
%iAs* 8.85 2.72 8.3 2.59 9.49 2.73 <0.001 
%MMA* 6.37 2.21 5.41 1.87 7.47 2.06 <0.001 
%DMA* 84.78 4.05 86.28 3.56 83.03 3.89 <0.001 
tAs: Total urinary arsenic. 
Asb: Arsenobetaine.       
MMA: Monomethylarsonic acid.      
DMA: Dimethylarsinic acid. 
IQR: Interquartile range 
£ Wilcoxon's sign-rank for total arsenic and arsenic species concentration; and paired Student's t-test for 
arsenic species relative content (%). 
*Mean and standard deviation instead of median and IQR are showed for %iAs, %MMA and %DMA. 

  126 

Mean birth weight was 3618 ± 477.38 grams. As seen in Table 2, there was no significant 127 
association between urinary arsenic and birth weight (adjusted β=0.16, 95%CI -1.07 ; 128 
1.39, p=0.800). The interaction between urinary arsenic and arsenic toxicokinetics 129 
difference between women (PCA Score 1) showed a reduction in birth weight, 130 
nonetheless, this was non-significant (adjusted β=-0.05, 95%CI -0.76 ; 0.65, p=0.882).  131 

Table 2. Association between urinary arsenic and interaction with arsenic metabolism 
with birth weight. 
   Variable Unadjusted 95% CI Adjusted 95% CI 
Urinary Arsenic 0.04 -1.27 ; 1.36 0.16 -1.07 ; 1.39 
Score 1α 0.62 -16.09 ; 17.33 1.27 -14.11 ; 16.65 
Urinary arsenic*Score 1 -0.10 -0.89 ; 0.69 -0.05 -0.76 ; 0.65 
Mother's age 4.40 -7.81 ; 16.60 3.63 -7.97 ; 15.23 
Pregestational BMI 23.76 9.59 ; 37.92 20.65 6.94 ; 34.35 
Education     

 Elementary Ref. Ref. 
 Secondary 305.65 -1.68 ; 612.97 371.28 72.67 ; 669.93 



  Tertiary 212.99 -101.37 ; 527.36 312.73 8.70 ; 616.77 
Residuals were calculated from the model tAs~β1(Arsenobetaine)+β2(Arsenobetaine)2 
Models were adjusted for mother's age, mother's education level, pre-gestational body mass index. 
95% CI: 95% Confidence Interval.   
αScore 1 (arsenic toxicokinetics difference between women), obtained from principal components 
analysis, is higher when %DMA is lower, meaning a reduced metabolic capability.  
BMI: Body mass index 
Bold letters indicate a p<0.05.   

 132 

Regarding gestational age at birth, as seen in Table 3, we found a non-significant increase 133 
of 0.02 weeks (95%CI -2.37 ; 2.40, p=0.989), while the interaction term presented a 134 
decrease, although not significant, in gestational age at birth (β=-0.17, 95%CI -1.53 ; 135 
1.19, p=0.802).  136 

Table 3. Association between urinary arsenic and interaction with arsenic metabolism with 
gestational age at birth 
   Variable Unadjusted 95% CI Adjusted 95% CI  
Urinary Arsenic -0.08 -2.48 ; 2.32 0.02 -2.37 ; 2.40  
Score 1α 0.01 -0.02 ; 0.04 0.01 -0.02 ; 0.04  
Urinary Arsenic*Score 1 -0.19 -1.63 ; 1.24 -0.17 -1.53 ; 1.19  
Mother's age -0.03 -0.06 ; -0.004 -0.03 -0.06 ; -0.001  
Pregestational BMI -0.04 -0.07 ; -0.01 -0.03 -0.07 ; 0.003  
Education      
 Elementary Ref. Ref.   
 Secondary 0.62 -0.12 ; 1.36 0.48 -0.27 ; 1.23  
  Tertiary 0.55 -0.21 ; 1.31 0.32 -0.45 ; 1.08  
Residuals were calculated from the model tAs~β1(Arsenobetaine)+β2(Arsenobetaine)2 
Models were adjusted for mother's age, mother's education level, pre-gestational body mass index.  
     
95% CI: 95% Confidence Interval. 
BMI: Body mass index. 
Bold letters indicate a p<0.05.     
αScore 1 (arsenic toxicokinetics difference between women), obtained from principal components 
analysis, is higher when %DMA is lower, meaning a reduced metabolic capability. 

 137 

In the stratified analysis by newborn sex, no significant association was found between 138 
arsenic exposure or the interaction term related to arsenic toxicokinetic differences and 139 
birth weight. However, for gestational age at birth, a significant association (p=0.041) 140 
was observed for males, indicating that each increase of 1000 units in urinary arsenic 141 
exposure is associated with an increase of 7.36 weeks in gestational age at birth (Table 142 
4). 143 

Table 4. Association between urinary arsenic and interaction with arsenic metabolism with birth weight and 
gestational age at birth stratified by newborn sex. 
Newborn 
sex Regression term Birth weight Gestational age at birth 

Adjusted p-value Adjusted p-value 

Male Urinary Arsenic 2.79 (-0.02 ; 5.60) 0.052 7.36 (0.30 ; 14.42) 0.041 
Urinary Arsenic * Score 1α 0.36 (-1.41 ; 2.13) 0.689 -2.79 (-8.84 ; 3.26) 0.364 



Female Urinary Arsenic -0.47 (-4.27 ; 3.32) 0.806 -6.92 (-16.62 ; 2.77) 0.160 
Urinary Arsenic * Score 1 -1.41 (-3.79 ; 0.98) 0.245 0.95 (-4.83 ; 6.72) 0.745 

Regressions were adjusted for mother's age, pregestational body mass index and education.  
Coefficients for gestational age at birth are scaled (Urinary arsenic/1000).   
αPCA Score 1 (arsenic toxicokinetics difference between women) is higher when %DMA is lower, meaning a reduced 
metabolic capability. 
For both models, the adjusted regression coefficient (95% Confidence Interval) is showed. 

 144 

We then evaluated if arsenic or the interaction term with arsenic toxicokinetic differences 145 
were associated with both outcomes, stratifying it by pregnancy trimester. As seen in 146 
Table 5, there was no association between urinary arsenic exposure and the interaction 147 
term with birth weight and gestational age at birth. 148 

Table 5. Association between urinary arsenic and interaction with arsenic metabolism with birth weight and 
gestational age at birth stratified by visit. 

Trimester Regression term Birth weight Gestational age at birth 
Adjusted p-value Adjusted p-value 

Second Urinary Arsenic 1.61 (-1.44 ; 4.67) 0.298 -5.11 (-14.43 ; 4.20) 0.28 
Urinary Arsenic * Score 1α -1.36 (-3.32 ; 0.59) 0.170 -5.13 (-12.00 ; 1.75) 0.142 

Third Urinary Arsenic -1.91 (-6.09 ; 2.27) 0.368 7.88 (-5.81 ; 21.57) 0.257 
Urinary Arsenic * Score 1 1.60 (-0.84 ; 4.05) 0.197 -0.81 (-8.19 ; 6.57) 0.828 

Regressions were adjusted for mother's age, pregestational body mass index and education.  
Coefficients for gestational age at birth are scaled (Urinary arsenic/1000).   
αPCA Score 1 (arsenic toxicokinetics difference between women) is higher when %DMA is lower, meaning a reduced 
metabolic capability. 
For both models, the adjusted regression coefficient (95% Confidence Interval) is showed. 

 149 

 150 

Discussion 151 

The present study aimed to evaluate the association between urinary arsenic and 152 
metabolism with birth weight and gestational age at birth. It was found no association 153 
with these outcomes, and this null relationship is unaffected by arsenic toxicokinetic 154 
differences reflected in urine. 155 

No association may have been found because exposure levels might not be high enough 156 
to exert an effect. Previous studies have found a decrease in birth weight with increasing 157 
levels of urinary arsenic, at exposure levels ≥100 µg/L.3 In this study, the median level of 158 
urinary arsenic for the cohort across pregnancy was 33.34 µg/L with a range of 2.50 – 159 
167.48 µg/L. A total of 25 and 36 women showed urinary tAs levels ≥100 µg/L in the 160 
second and third trimester of pregnancy, respectively, but no difference in birth weight 161 
was found (Supplementary material 3). In some previous studies, low levels of arsenic 162 
in urine (1.8 – 27.7 µg/L) have not been found to be associated with a decrease in birth 163 
weight.17 However, other studies with similar exposure levels in urine have found a 164 
significant association with birth weight or estimated foetal weight.18, 19 A Wuhan cohort 165 
study that showed median urinary arsenic levels of 31.22 µg/L for the first, 25.23 µg/L 166 
for the second, and 24.98 µg/L for the third trimester found a significant decrease of 24.27 167 



g in birth weight only for the third trimester.12 This suggests that even low exposure levels 168 
might be harmful for foetal development. Additionally, it is important to remark that no 169 
arsenic exposure level is considered to be safe since even water arsenic exposure levels 170 
between 1 – 10 µg/L has been associated with increased cardiovascular mortality 171 
compared to concentrations <1 µg/L.20. 172 

In a cohort study from Bangladesh, it was found that water and toenail arsenic association 173 
with birth weight was mediated by gestational age.21, 22 In the present study, pregnancy 174 
duration, seen as gestational age at birth, was not associated with arsenic exposure. This 175 
difference might be attributed to the level of arsenic exposure in drinking water observed 176 
in the Bangladeshi cohort. Although the median arsenic concentration was 2.3 µg/L at the 177 
time of enrolment, 33.3% of pregnant women were exposed to levels ranging from 18.4 178 
to 1400 µg/L. 21 On the other hand, it has been found that low arsenic levels in biological 179 
samples such as umbilical cord (3.82 ± 3.81 µg/L) and whole blood (4.13 ± 3.21 µg/L) 180 
were associated  with a decrease in gestational age by 0.342 weeks.23 On the contrary, in 181 
a study that included a total of 212 mother-infant pairs, no association was found between 182 
total urinary arsenic (median 7.77 µg/L) and urinary DMA (3.44 µg/L) with gestational 183 
age.24 The lack of association with birth weight and gestational age at birth could be due 184 
to an exposure below harmful levels, or to unmeasured nutritional, genetical and other 185 
factors. 186 

When analysing the impact of arsenic exposure on birth outcomes by newborn sex, we 187 
found no significant relationship between arsenic levels and birth weight. However, for 188 
male infants, there was a notable increase in gestational age—specifically, an increase of 189 
0.0746 weeks for every 10 units rise in urinary arsenic concentration. In contrast, a 190 
previous study involving 113 mother-child pairs reported no significant associations 191 
between arsenic exposure and gestational age across both sexes. 25 This discrepancy may 192 
stem from different exposure levels, particularly if Tacna has higher arsenic 193 
concentrations. Despite the modest effect size observed in our study, it remains unclear 194 
why urinary arsenic correlates positively with gestational age. 195 

Arsenic can be metabolized, and  a higher arsenic methylation capability of the body can 196 
reduce this metalloid toxicity.26 Higher concentration of urinary MMA and urinary iAs 197 
are shown to have the biggest impact in decreasing birth weight and birth length, 198 
respectively 13; evidence is less clear for DMA; Nonetheless, a higher proportion of DMA, 199 
which means a better arsenic metabolism, is associated with better health outcomes 200 
compared to those with lower DMA, such as general health status of children 27 and 201 
neurodevelopment in low birth weight preterm children.28 We have observed in pregnant 202 
women from Tacna, Peru that DMA at 84.78% (total urinary arsenic minus arsenobetaine) 203 
represents the main arsenic component present in urine. This may explain the low 204 
negative impact of arsenic on birthweight and gestational age at birth; and suggests that 205 
the difference in arsenic toxicokinetics might modify the association.  206 

The effect modification of arsenic toxicokinetics was also assessed in the study by 207 
including the interaction term of arsenic with the PCA Score 1. For both birth weight and 208 
gestational age at birth, differences in arsenic metabolism seemed to modify the 209 
association by reducing these outcomes, although it was non-significant. Despite not 210 
finding an association, there might be an interaction between arsenic exposure and 211 



metabolism, as suggested in a Romanian longitudinal pilot study, where women who had 212 
low birth weight children showed a higher percentage of inorganic arsenic and MMA 29, 213 
suggesting a slower or reduced metabolism.  214 

Consideration of arsenic species and speciation is essential for a better understanding of 215 
exposure, not only in research studies but also in nationwide screenings such as the one 216 
done in the NHANES survey.30, 31 Currently, the Peruvian Demographic and Health 217 
Survey does not consider water or urinary arsenic evaluation. 218 

It is possible that birth weight was not affected due to the variation in arsenic exposure 219 
between pregnancy trimesters. Other studies showed that there are seasonal variations in 220 
water and urinary arsenic concentration 32-34, although depending on the area, the change 221 
can be very small (3.3 µg/L in well water between the dry and rainy season).35 The first 222 
study visit was conducted in summer and autumn, while the second visit occurred during 223 
winter and spring. At the second visit, median tAs was 28.32 µg/L, compared with 41.57 224 
µg/L found in the first study visit. In the stratified analysis, no association was found with 225 
arsenic exposure, nor with toxicokinetic differences.  226 

The foetus experiences the fastest weight gain during the third trimester 36, and different 227 
arsenic exposures in this developmental window have been found to reduce birth weight 228 
37, although some authors have found that early pregnancy arsenic exposure might be the 229 
critical window for birth weight and other pregnancy outcomes.38 Nonetheless, trimester-230 
based analysis might not reflect an adequate association.39 Daily exposure assessment is 231 
difficult for exposures that need biological samples such as urinary arsenic. Arsenic has 232 
been found to be associated with a decrease in birth weight and gestational age at birth, 233 
possibly through lowering thyroid hormones ratio during early pregnancy.18 Seasonal 234 
variation in exposure, along with the analysis of pregnancy-relevant hormones should be 235 
considered for a better evaluation and interpretation. 236 

It is notable that pregnant women from Tacna, , despite living in the highest arsenic-237 
exposed region in Peru, have one of the highest mean birth weights.10 One contributing 238 
factor may be the considerable proportion of individuals from the Aymara ethnicity in 239 
Tacna.8, 14 This is an indigenous group, predominantly located in high altitude settings, 240 
that is known for higher birth weight compared to other high-altitude populations.40 In 241 
our sample, neonates of pregnant women who self-identified as Aymara had a mean birth 242 
weight of 3711 g, higher compared to the other ethnic groups (3536 g for mestizo and 243 
3466 g for Quechua) (Supplementary material 4). These findings suggests that the 244 
Aymara population may possess genetic traits that supports foetal weight gain, even in 245 
the context of arsenic exposure. 246 

When considering arsenic metabolism,  polymorphisms in the AS3MT gene related 247 
increased arsenic metabolic capability 41-44, were found in Aymara populations of 248 
Argentina.45 However, while 55.41% of our sample self-identified as Aymara, %DMA 249 
was not different between ethnic groups in our study (Supplementary material 5). These 250 
hypotheses should be explored in further studies. 251 

The study has some limitations. There were unmeasured confounders such as the 252 
consumption of folates, which are part of the one-carbon metabolism and methyl donors 253 
for arsenic metabolism, which could modify the association between arsenic metabolism 254 



and birth weight.46 Based on the Peruvian national program on pregnancy, it is mandatory 255 
to supplement women with folic acid; therefore, the folate deficiency in our population is 256 
reduced, however it should be considered in further studies. Covariates such as gestational 257 
weight gain should also be evaluated since it is strongly associated with birth weight, 258 
especially during the first half of gestation.47 The exposure assessment at the beginning 259 
of pregnancy (first trimester) is encouraged, since it would also allow testing arsenic 260 
effects on placenta formation, as has been suggested in both human 48 and animal 261 
studies.49 This would also allow for a better evaluation of seasonal variation in arsenic 262 
exposure. This study used specific gravity to adjust arsenic concentration in urine, which 263 
may have different sources of measurement error than creatinine adjustment.50  264 

 265 

Conclusions 266 

Arsenic was not associated with birth weight or gestational age at birth in this study, and 267 
this null relationship was unaffected by arsenic toxicokinetic differences reflected in the 268 
analysis. This should not be interpreted as if the Tacna population is protected against 269 
arsenic toxicity. Further studies should include other variables to better understand this 270 
phenomenon and the mechanism(s) behind it, including the evaluation of other clinical 271 
outcomes. Additionally, the inclusion of arsenic exposure assessment and its speciation 272 
in national programs should be encouraged for better monitoring, along with the 273 
elimination of arsenic contamination in drinking water. 274 
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Table 1. Urinary arsenic species concentration and relative content across pregnancy. 
Arsenic 

specie (µg/L) 
Total Second trimester Third trimester p-valueβ Median IQR Median IQR Median IQR 

tAs 33.34 30.58 41.57 33.95 28.32 20.67 <0.001 
AsIII 1.57 1.57 2.08 1.9 1.24 1.03 <0.001 
AsV 1.36 1.3 1.36 1.36 1.36 1.21 0.553 
iAs 2.99 2.8 3.54 2.99 2.68 2.03 0.001 
MMA 2.1 1.79 2.17 2.07 2.07 1.35 0.165 
DMA 28.36 26.86 35.55 29.06 23.36 16.75 <0.001 
Asb 2.37 2.55 2.64 3.05 2.09 2.24 0.002 
%iAs* 8.85 2.72 8.3 2.59 9.49 2.73 <0.001 
%MMA* 6.37 2.21 5.41 1.87 7.47 2.06 <0.001 
%DMA* 84.78 4.05 86.28 3.56 83.03 3.89 <0.001 
tAs: Total urinary arsenic. 
Asb: Arsenobetaine.       
MMA: Monomethylarsonic acid.      
DMA: Dimethylarsinic acid. 
β Wilcoxon's sign-rank for total arsenic and arsenic species concentration; and paired Student's t-test for 
arsenic species relative content (%). 
*Values are shown as mean and standard deviation. 
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Table 2. Association between urinary arsenic and interaction with arsenic metabolism with 
birth weight. 
   Variable Unadjusted 95% CI Adjusted 95% CI 
Urinary Arsenic 0.04 -1.27 ; 1.36 0.16 -1.07 ; 1.39 
Score 1α 0.62 -16.09 ; 17.33 1.27 -14.11 ; 16.65 
Urinary arsenic*Score 1 -0.10 -0.89 ; 0.69 -0.05 -0.76 ; 0.65 
Mother's age 4.40 -7.81 ; 16.60 3.63 -7.97 ; 15.23 
Pregestational BMI 23.76 9.59 ; 37.92 20.65 6.94 ; 34.35 
Education     

 Elementary Ref. Ref. 
 Secondary 305.65 -1.68 ; 612.97 371.28 72.67 ; 669.93 
  Tertiary 212.99 -101.37 ; 527.36 312.73 8.70 ; 616.77 
Residuals were calculated from the model tAs~β1(Arsenobetaine)+β2(Arsenobetaine)2 
Models were adjusted for mother's age, mother's education level, pre-gestational body mass index. 
   
95% CI: 95% Confidence Interval.   
αScore 1 (arsenic toxicokinetics difference between women), obtained from principal components 
analysis, is higher when %DMA is lower, meaning a reduced metabolic capability.  
BMI: Body mass index 
Bold letters indicate a p<0.05.   
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Table 3. Association between urinary arsenic and interaction with arsenic metabolism 
with gestational age at birth 

   Variable 
Adjuste

d 95% CI 
Adjuste

d 95% CI  
Urinary Arsenic -0.08 -2.48 ; 2.32 0.02 -2.37 ; 2.40  
Score 1α 0.01 -0.02 ; 0.04 0.01 -0.02 ; 0.04  
Urinary Arsenic*Score 1 -0.19 -1.63 ; 1.24 -0.17 -1.53 ; 1.19  
Mother's age -0.03 -0.06 ; -0.004 -0.03 -0.06 ; -0.001  
Pregestational BMI -0.04 -0.07 ; -0.01 -0.03 -0.07 ; 0.003  
Education      
 Elementary Ref. Ref.   
 Secondary 0.62 -0.12 ; 1.36 0.48 -0.27 ; 1.23  
  Tertiary 0.55 -0.21 ; 1.31 0.32 -0.45 ; 1.08  
Residuals were calculated from the model tAs~β1(Arsenobetaine)+β2(Arsenobetaine)2 
Models were adjusted for mother's age, mother's education level, pre-gestational body mass 
index.  
     
95% CI: 95% Confidence Interval. 
BMI: Body mass index. 
Bold letters indicate a p<0.05.     
αScore 1 (arsenic toxicokinetics difference between women), obtained from principal 
components analysis, is higher when %DMA is lower, meaning a reduced metabolic 
capability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 4. Association between urinary arsenic and interaction with arsenic metabolism with birth 
weight and gestational age at birth stratified by newborn sex. 

Newborn sex Regression term Birth weight Gestational age at birth 
Adjusted p-value Adjusted p-valu  

Male Urinary Arsenic 2.79 (-0.02 ; 5.60) 0.052 7.36 (0.30 ; 14.42) 0.041 
Urinary Arsenic * Score 1α 0.36 (-1.41 ; 2.13) 0.689 -2.79 (-8.84 ; 3.26) 0.364 

Female Urinary Arsenic -0.47 (-4.27 ; 3.32) 0.806 -6.92 (-16.62 ; 2.77) 0.160 
Urinary Arsenic * Score 1 -1.41 (-3.79 ; 0.98) 0.245 0.95 (-4.83 ; 6.72) 0.745 

Regressions were adjusted for mother's age, pregestational body mass index and education.  
Coefficients for gestational age at birth are scaled (Urinary arsenic/1000).   
αPCA Score 1 (arsenic toxicokinetics difference between women) is higher when %DMA is lower, meaning a reduced metabol  
capability. 
For both models, the adjusted regression coefficient (95% Confidence Interval) is showed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5. Association between urinary arsenic and interaction with arsenic metabolism with birth weight and 
gestational age at birth stratified by visit. 

Trimester Regression term 
Birth weight Gestational age at birth 

Adjusted p-
value Adjusted p-value 

Second Urinary Arsenic 1.61 (-1.44 ; 4.67) 0.298 -5.11 (-14.43 ; 4.20) 0.28 
Urinary Arsenic * Score 1α -1.36 (-3.32 ; 0.59) 0.170 -5.13 (-12.00 ; 1.75) 0.142 

Third Urinary Arsenic -1.91 (-6.09 ; 2.27) 0.368 7.88 (-5.81 ; 21.57) 0.257 
Urinary Arsenic * Score 1 1.60 (-0.84 ; 4.05) 0.197 -0.81 (-8.19 ; 6.57) 0.828 

Regressions were adjusted for mother's age, pregestational body mass index and education.  
Coefficients for gestational age at birth are scaled (Urinary arsenic/1000).  
αPCA Score 1 (arsenic toxicokinetics difference between women) is higher when %DMA is lower, meaning a reduced 
metabolic capability. 
For both models, the adjusted regression coefficient (95% Confidence Interval) is showed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Supplementary Material 1. Arsenic Principal Component Analysis, correlation and 
eigenvectors. 

 

 

 



Supplementary Material 2. Water arsenic concentrations distribution of pregnant 
women in the second and third trimester, and its correlation with urinary DMA. 

 

 

Fano D, Vásquez-Velásquez C, Aguilar J, Gribble MO, Wickliffe JK, Lichtveld MY, 
Steenland K, Gonzales GF. Arsenic Concentrations in Household Drinking Water: A 
Cross-Sectional Survey of Pregnant Women in Tacna, Peru, 2019. Expo Health. 2020 
Dec;12(4):555-560. doi: 10.1007/s12403-019-00337-5. Epub 2019 Dec 7. PMID: 
33210017; PMCID: PMC7668403. 

Water arsenic 
level category 

(µg/L)Ω 

Second trimester Third trimester 
#Pregnant 

women % 
DMA 

correlation£ 
#Pregnant 

women % 
DMA 

correlation£ 
5 15 9.43 

0.345** 

24 17.52 

0.279* 

10 32 20.13 47 34.31 
25 55 34.59 39 28.47 
50 33 20.75 19 13.87 
100 22 13.84 5 3.65 
250 2 1.26 3 2.19 

Ω Water arsenic concentrations were obtained by analyzing household drinking water 
samples, using a semi-quantitative method described in Fano et al., 2019. 
£ Spearman correlation analysis (Spearman’s rho). 
*p<0.01, **p<0.001 



 

 

 

Supplementary material 3. Mean birth weight comparison between women with total 
urinary arsenic exposure levels ≥100 µg/L and <100 µg/L by trimester of pregnancy. 

Trimester tAs exposure 
(µg/L)  

#Participants Birth weight p-value*  Mean SD 

Second <100 122 3623.82 489.99 0.749 ≥100 25 3589.79 412.38 

Third <100 91 3622.06 430.73 0.865 ≥100 36 3606.32 631.28 
tAs: Total urinary arsenic 
SD: Standard deviation 
*p-value for Student’s t-test 
 



Supplementary material 4. Mean birth weight according to the mother’s self-reported 
ethnic group, and one-way ANOVA analysis. 

Ethnic group (n) Birt weight p-value* Mean SD 
Mestizo (52) 3536.06 486 

0.037 Quechua (18) 3466.11 391.47 
Aymara (87) 3711.38 480.2 

SD: Standard deviation 
The group size for each ethnic group is displayed in parenthesis. 
*p-value for One-way ANOVA test 
 

 



Supplementary material 5. Percentage of dimethylarsonic acid (%DMA) in different 1 
ethnic groups. 2 

Ethnic group (n) %DMA p-value* Mean SD 
Mestizo (43) 84.88 4.1 

0.463 Quechua (14) 84.99 4.23 
Aymara (65) 84.66 4.02 

DMA: Dimethylarsonic acid 3 
The group size for each ethnic group is displayed in parenthesis 4 
*p-value for one-way ANOVA test 5 
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