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Using hyperspectral imaging and machine learning to identify food 1 

contaminated compostable and recyclable plastics  2 

Nutcha Taneepanichskul, Helen C. Hailes and Mark Miodownik 3 

Abstract 4 

With the increasing public legislation aimed at reducing plastic pollution, compostable plastics 5 

have emerged as an alternative to conventional plastics for some food packaging and food service 6 

items. However, the true value of compostable plastics can only be realized if they do not enter the 7 

environment as contaminants but instead are processed along with food and garden waste using 8 

industrial composting facilities. Distinguishing compostable plastics from conventional plastics in 9 

this waste stream is an outstanding problem. Currently, Near Infrared (NIR) technology is widely 10 

used to identify polymers, but it falls short in distinguishing plastics contaminated with food waste. 11 

This study investigates the application of hyperspectral imaging (HSI) to address this challenge, 12 

enhancing the detection and sorting of contaminated compostable plastics. By combining HSI with 13 

new machine learning algorithms we show it is possible to accurately identify and classify plastic 14 

packaging with food waste contamination, achieving up to 99% accuracy. The study also measures 15 

the impact of plastic features such as darkness, size, and level of contamination on model 16 

performance, with darkness having the most significant impact. Implementing HSI in waste 17 

management systems can significantly increase composting and recycling rates. This advanced 18 

deep learning approach supports the circular economy by ensuring that both compostable and 19 

recyclable plastics are effectively processed and recycled, minimizing environmental impact. 20 

 21 

Keywords: food contamination, hyperspectral imaging, recycling, composting, machine learning, 22 

automatic sorting 23 

 24 

 25 

 26 

 27 



1. Introduction  28 

The increasing popularity of compostable and biodegradable plastics underscores the need for 29 

efficient sorting technologies to separate and collect them for waste processing. In 2023 they 30 

represented 52.1% of the global bioplastic production (EuropeanBioplastic, 2023). However, 31 

current waste management systems often fail to detect and separate compostable plastics especially 32 

when contaminated with food waste, leading to their improper disposal in landfills or incinerators 33 

for the majority of compostable plastics (Allison et al., 2022).  34 

Near-Infrared (NIR) optical sorting is a widely used technology in recycling facilities for 35 

separating different types of plastics. This technology relies on the distinct spectral signatures of 36 

various plastic polymers to achieve accurate sorting (Taneepanichskul et al., 2022). However, food 37 

waste contamination, poses significant challenges to the efficiency and effectiveness of NIR 38 

optical sorting due to  issues with spectral abortion reflection of NIR frequencies by the food 39 

residues on the plastic surfaces (Masoumi et al., 2012). Additionally, the presence of food waste 40 

introduces extra spectral signals in the NIR range, creating noise that makes it harder for the system 41 

to accurately identify the polymer type. 42 

Hyperspectral imaging (HSI) coupled with machine learning algorithms offer an advanced solution 43 

for sorting plastics, surpassing traditional NIR optical sorting methods. HSI generates a 44 

hyperspectral cube, where each pixel contains a continuous spectrum, enabling detailed spectral 45 

analysis at each pixel in the image. This capability helps overcome the challenges posed by food 46 

contaminated plastics because uncontaminated pixels can be correctly identified rather than relying 47 

on the average signal from the whole sample as with NIR methods. 48 

While numerous studies have explored the application of HSI for identifying various types of 49 

plastics, there remains a notable gap in research that specifically addresses the challenge of 50 

detecting food contaminated compostable plastics, which represents a significant issue within the 51 

context of current plastic waste management systems.  52 

In 2013 Ulrici et al. used HSI and partial least squares discriminant analysis (PLS-DA) to 53 

distinguish PET and PLA achieving over 98% accuracy with just six variables on the reduced 54 

matrix (Ulrici et al., 2013). Subsequently, Bonifazi used HSI with machine learning to sort paper, 55 

cardboard, plastics, and multilayer packaging. A PLS-DA-based model achieved a 0.933 56 



recognition and reliability rate, making HSI a reliable, low-cost solution for identifying impurities 57 

and composite materials in plastic waste streams (Bonifazi et al., 2021). Taneepanichskul et al then 58 

applied HSI together with PLS-DA to identify and classify compostable plastics (PLA and PBAT), 59 

compostable materials (sugarcane and palm leaf derived packaging) and conventional plastics 60 

(LDPE, PET and PP). PLS-DA achieved a perfect classification (100%) for virgin materials larger 61 

than 10 mm x 10 mm (Taneepanichskul et al., 2023). Taneepanichskul et al. also recently studied 62 

the impact of packaging properties such as darkness, colour, size, and contamination, showing how 63 

they all impacted identification. The accuracy of the system decreased when detecting plastics that 64 

were dark, thin, small, or had high levels of contamination (Taneepanichskul et al., 2024).  65 

In this paper we present work developing new??? chemometric and machine learning algorithms 66 

combined with HSI and show data on their performance identifying compostable and recyclable 67 

plastics with varying types and levels of food contamination. Additionally, the study explores the 68 

impact of real-world food plastic packaging properties such as size, colour and darkness, on the 69 

performance of the system.  70 

 71 

2. Materials and Methods  72 

To develop the model to identify and classify food-contaminated compostable and recyclable 73 

plastic packaging samples were required for the development of three datasets: a calibration 74 

dataset, a cross-validation dataset, and a testing dataset. The training dataset is the initial set of 75 

data used to train a model (Wolff, 2020). The cross-validation dataset evaluates the model's 76 

predictive performance on new, unseen data, helping to identify issues like overfitting or selection 77 

bias and providing insight into the model's ability to generalize to an independent dataset 78 

(ScikitLearn, 2024). The testing dataset offers a final, real-world validation of the model's 79 

effectiveness on completely unseen data (Barkved, 2022). The details of the food contaminants, 80 

the plastic samples, the HSI system and the deep learning algorithms are described in the following 81 

sections.  82 

2.1 Simulating Food Contamination 83 

The contamination levels in this experimental setup were categorized into three levels: low (25%), 84 

medium (50%), and high (75%). Figure 1 illustrates the contamination process, depicting the 85 



simulation of 25%, 50%, and 75% contamination using tomato ketchup. Each sample was cut into 86 

50 mm x 50 mm pieces with a thickness of 0.4 mm and divided into four equal sections.  87 

Two sauces were used to simulate food contamination: tomato ketchup and mayonnaise. These 88 

were chosen due to their ability to be applied repeatably and consistently to the samples. The 89 

different compositions helps to create training data and cross-validation data. The compositions of 90 

these two sauces are shown in Table 1. These condiments are suitable proxies for food 91 

contamination because they can represent high water activity foods such as dips and sauces, 92 

prepared salads, and dairy products; acidic foods such as pickled products, fermented foods, and 93 

fruit-based sauces; emulsified foods such as salad dressings, processed meats, and butter and 94 

margarine; and fat-containing foods. Their compositional similarities to a wide range of other food 95 

products make them ideal for studying contamination and spoilage patterns across different food 96 

categories. 97 

 98 

Table 1: The ingredients and components of HEINZ Tomato Ketchup and HEINZ Mayonnaise 99 

HEINZ Tomato Ketchup Main Ingredient Component 

Tomatoes Water 

Carbohydrate: Including sugars (glucose and 

fructose) and dietary fiber 

Acid: Citric acid and malic acid, contributing 

to the tartness 

Vitamin: Vitamin C, Vitamin A (from beta-

carotene), and Vitamin K. 

Minerals: Potassium, magnesium, and iron 

Antioxidants: Lycopene, which gives tomatoes 

their red colour  

Vinegar Acetic Acid 

Sugar Glucose, fructose, sucrose 

Salt Sodium Chloride  

Olive oil Monounsaturated Fats: Predominantly oleic 

acid 

Antioxidants: Polyphenols and Vitamin E 



Vitamin  

Fat-Soluble Vitamins: Vitamin K and E 

HEINZ Mayonnaise Component 

Oil Triglycerides 

Fatty Acid 

Egg Yolk  Water 

Proteins 

Fats 

Cholesterol 

Vitamin A,D,E and K 

Vinegar Acetic Acid 

Water - 

Sugar Glucose, fructose, sucrose 

Starch  - 

Salt Sodium Chloride 

Mustard Seeds Water, Acids, Vitamin A and Vitamin C 

 100 

Additionally, their viscosity and texture allow them to adhere well to surfaces, effectively 101 

simulating real-life conditions of food residue on plastics. This makes them ideal for testing 102 

cleaning and contamination processes. In this study, HEINZ tomato ketchup was used for both the 103 

training and cross-validation datasets, while HEINZ mayonnaise was used for the cross-validation 104 

dataset.  105 

To achieve 25% contamination, tomato ketchup or mayonnaise was applied to one section; for 106 

50% contamination, it was applied to two sections; and for 75% contamination, it was applied to 107 

three sections. The ketchup and mayonnaise were then spread to ensure they covered the entire 108 

plastic surface.  109 



 110 

Figure 1: Simulated contamination levels of 25%, 50% and 75% sauces. 111 

 112 

2.2 Sample Preparation  113 

The experimental samples encompassed several size and contamination levels, with both 114 

conventional and compostable plastics. Within the category of conventional plastics, Low-Density 115 

Polyethylene (LDPE), High-Density Polyethylene (HDPE), Polyethylene Terephthalate (PET), 116 

and Polypropylene (PP) were represented. The compostable plastic category comprised Polylactic 117 

Acid (PLA), Polybutylene Adipate Terephthalate (PBAT), and Polyhydroxyalkanoate (PHA).   118 

The materials were allocated into three datasets, namely calibration, cross-validation, and testing 119 

datasets as mentioned earlier. The training dataset encompassed both pristine plastics and plastics 120 

contaminated with low level of tomato ketchup (25%). The details of the materials within the 121 

training dataset are presented in Table 2. 122 

 123 

 124 

 125 

 126 

 127 



Table 2: List of samples in training dataset 128 

Material  Material condition Size Number of 

replicates per plastic 

type  

LDPE, HDPE, PET, 

PP, PLA, PBAT and 

PHA 

Pristine Plastic 50 mm x 50 mm 35 

40 mm x 40 mm 35 

30 mm x 30 mm 35 

20 mm x 20 mm 35 

Plastics with 25% 

level of 

tomato ketchup 

contamination 

50 mm x 50 mm 21 

 129 

In the cross-validation set, there were three replicates each with 50% and 75% tomato ketchup 130 

contamination of LDPE, HDPE, PET, PP, PLA, PBAT, and PHA. Additionally, for 25%, 50%, and 131 

75% mayonnaise contamination, LDPE, HDPE, PET, PP, PLA, PBAT, and PHA, again each with 132 

three replicates.  133 

In the testing dataset, 30 food waste contaminated plastic packaging items were collected from a 134 

various sources spanning across the city of London including tubs, trays, lids, plastic spoons. These 135 

sources were inclusive of both supermarkets, cafe and restaurants, resulting variety of packaging 136 

types, including take-away boxes, cutlery, lids, and more. We selected only the plastic packaging 137 

that had a label to show type of packaging on them in order to verify the model. Figure 2 provides 138 

examples of contaminated food packaging in testing dataset. 139 

 140 



 141 

Figure 2: The example of real-world food contaminated plastic packaging used in the testing 142 

dataset. 143 

 144 

 145 

 146 

 147 
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2.3 Imaging methodology 157 

2.3.1 Hyperspectral data acquisition and analysis schematic 158 

 159 

Figure 3: Schematic showing the hyperspectral data acquisition and analysis.  160 

As shown in Figure 3 hyperspectral images were obtained from line scans of the samples on a 161 

conveyor belt passing under a HySpex Baldur S-640i N camera. The camera, positioned at a 162 

working distance of 1 metre with a 16° field of view, covered a spectral range of 950 to 1730 nm 163 

with a spectral resolution of 3.36 nm, resulting in a total of 232 spectral bands. The spatial pixel 164 

size of the images was 0.44 mm (Hyspex, 2023). The system's conveyor belt measured 700 mm in 165 

length, 215 mm in width, and 60 mm in height, with a maximum speed of 120 mm/s. The image 166 

capture background was the black conveyor belt. A halogen lamp, emitting light across the 167 

spectrum from 400 nm to 2500 nm, was employed as the light source. This experimental setup has 168 

been described in more detail in our previous work. (Taneepanichskul et al., 2024, Taneepanichskul 169 

et al., 2023). HyspexGround software facilitated the acquisition of the hyperspectral image. 170 

Subsequently, the Breeze software package was employed for PCA model development, spectrum 171 

preprocessing, application of diverse machine learning algorithms for classification, and 172 

production of classification results.  173 



2.3.2 Principal component analysis (PCA) and spectrum pre-processing  174 

PCA (Principal Component Analysis) was utilized to investigate the relationships between samples 175 

and measured variables, with the objective of unveiling patterns within the data. Its primary focus 176 

lies in identifying common features rather than distinguishing differences between classes (Castro-177 

Díaz et al., 2023). PCA breaks down data into linear combinations of the original hyperspectral 178 

data, known as principal components (PCs). PC1 represents the greatest variability within the 179 

dataset, capturing the majority of the information. The subsequent principal components follow in 180 

descending order, representing the remaining variance. In our case, PCA was employed to 181 

eliminate background pixel and isolate objects (plastics) within the hyperspectral images.  182 

Subsequently, spectral preprocessing was conducted using a combination of methods. This 183 

included applying a combination of Savitzky-Golay (SG) first derivative with a 2nd polynomial 184 

and a 15-point window, Standard Normal Variate (SNV) and mean centering. This technique was 185 

employed to eliminate insignificant baseline signals from the collected data and to rectify scatter 186 

data (Taneepanichskul et al., 2024). 187 

2.3.3 Machine learning classification model  188 

Various machine learning algorithms, including logistic regression, decision tree algorithms, 189 

support vector machines (SVM), artificial neural networks (ANN), and partial least squares 190 

discriminant analysis (PLS-DA), were applied to build classification models. The samples in the 191 

training dataset were used to develop these models.  192 

2.3.3.1 Logistic regression 193 

Logistic regression is a fundamental supervised learning method widely utilized for classification 194 

tasks, particularly in scenarios involving binary outcomes. Through the sigmoid function, it 195 

transforms spectral band values to produce probabilities for binary predictions, with coefficients 196 

assigned to each band indicating their predictive influence (Qian et al., 2012, Kabir et al., 2021).  197 

Logistic regression can be extended to address multiclass classification problems through softmax 198 

regression. The softmax function normalizes the output into a probability distribution across 199 

multiple classes, ensuring that the sum of the predicted probabilities for all classes equals unity. 200 



This way, the model can provide predictions for each class, and the class with the highest 201 

probability is considered as the final prediction (Tranmer and Elliot, 2008). 202 

2.3.3.2 Decision tree (DT) 203 

A decision tree (DT) is a non-parametric model structured as a tree, where each node contains a 204 

decision rule based on input data. This rule directs whether to move to the left or right sub-nodes, 205 

while the leaf nodes provide the final output. DTs are applicable to both classification and 206 

regression tasks and are particularly valued for their interpretability. One common method for 207 

building nodes in a DT is information gain, which uses entropy or the Gini index to measure the 208 

amount of information retained by each feature in the input data before making predictions. (Zhang 209 

et al., 2022).   210 

2.3.3.3 Support vector machine (SVM)  211 

A Support Vector Machine (SVM) was used as a supervised machine learning algorithm for 212 

classification, regression, and outlier detection. It was used to identify hyperplanes in the feature 213 

space that separate data points belonging to different classes. The hyperplane was positioned to 214 

maximize the margin, which is the distance between the hyperplane and the nearest data points of 215 

each class. SVM operates in the original feature space, but kernelized SVMs were also used, these 216 

transform data into higher-dimensional spaces through kernel functions. The algorithm requires 217 

labelled training data to learn and relies on support vectors, which are crucial points closest to the 218 

hyperplane. In a One-versus-One (OvO) approach, binary classifiers are created for each pair of 219 

classes. For N classes, this results in C(N,2) binary classifiers. In our scenario, where we sought 220 

to classify 7 types of plastics, we used 21 binary classifiers.  221 

2.3.3.4 Artificial neural network (ANN) 222 

The architecture of an artificial neural network (ANN) typically comprises three layers: input, 223 

hidden, and output. The input layer captures spectral information from hyperspectral imaging, 224 

where each input to the ANN is a vector representing the spectral signature of each sample. The 225 

hidden layer, containing numerous neurons, performs computations on the input data. Hidden 226 

layers enable ANNs to learn complex problems and nonlinear relationships. Each neuron in a 227 

hidden layer calculates a weighted sum of its inputs, applies an activation function, and produces 228 



an output that becomes the input for the next layer. Various activation functions, such as linear, 229 

sigmoid, tanh, and ReLU, can be employed based on the task.  230 

The input to the ANN was represented by a vector that encapsulates the spectral information, with 231 

its length determined by the number of spectral bands or channels in the hyperspectral data. Each 232 

element of the vector corresponded to the intensity or reflectance value of the pixel in a specific 233 

spectral band. The hidden layer, with 100 neurons, utilized the ReLU activation function to process 234 

the hyperspectral data and extract relevant features for classifying the types of plastics 235 

(MicrosoftBuild, 2021). The output layer produced the final classification results, with each neuron 236 

corresponding to a different type of plastic, typically using a softmax activation function to provide 237 

probabilities for each class. 238 

2.3.3.5 Partial least squares discriminant analysis (PLS-DA) 239 

PLS-DA, a blend of partial least squares regression (PLS-R) and discriminant analysis (DA), is a 240 

supervised ML method for dimensionality reduction and material class prediction. It necessitates 241 

an X matrix with calibration spectra and a corresponding Y matrix denoting class identity (types 242 

of plastic). In binary cases, Y is a single column; for multiclass scenarios, it's a dummy matrix with 243 

1’s and 0’s indicating class membership. The model’s output isn't strictly binary, requiring a 244 

threshold establishment during prediction. Setting thresholds employs various methods, with 245 

Bayes’ Theorem being a prevalent choice. Alternatively, a 0.5 cut-off point is often employed for 246 

binary classification tasks (Amigo et al., 2015). In our PLS-DA, the linear equation was modelled 247 

with around 5 latent variables, enabling graphical visualization and understanding through LV 248 

scores and loadings. 249 

2.4 Classification model performance (model validation) 250 

Model validation is a crucial step in machine learning, particularly for assessing the performance 251 

of classification models. Various metrics are utilized for evaluation, including sensitivity (Equation 252 

1), specificity (Equation 2), F1 score (Equation 3), and accuracy (Equation 4). The formulas for 253 

these metrics are based on the following definitions: True Positive (TP) represents instances where 254 

the model correctly predicts the positive class, while True Negative (TN) indicates instances where 255 

the model correctly predicts the negative class. False Positive (FP) refers to instances where the 256 



model incorrectly predicts the positive class, and False Negative (FN) denotes instances where the 257 

model incorrectly predicts the negative class. 258 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   (Equation 1) 259 

 260 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
  (Equation 2) 261 

 262 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =   
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+
1

2 
(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

  (Equation 3) 263 

 264 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (Equation 4) 265 

 266 

2.5 The evaluation of plastic features in testing dataset 267 

To measure the impact of plastic features on the performance of classification models, the 268 

properties of plastics in the testing dataset, including darkness, level of contamination, and size, 269 

were evaluated using image processing algorithms to ensure precise evaluation (Taneepanichskul 270 

et al., 2024).  271 

2.5.1 Size  272 

The plastic packaging images in the testing dataset were resized to 10 cm x 15 cm and converted 273 

to greyscale. Otsu's thresholding method was then applied to remove the background and convert 274 

the greyscale images to binary format. In this process, pixels with values below the threshold were 275 

set to 0, while those above the threshold were set to 255. Following this, the percentages of 276 

foreground and background areas were calculated. These percentages were then multiplied by 150 277 

cm² (the total area of the frame) to determine the area occupied by the plastic packaging. The size 278 

was classified into 3 categories: small (< 20 cm2), medium (20 cm2 ≤ area < 80 cm2) and large 279 

(≥80 cm2) (Taneepanichskul et al., 2024). 280 

 281 

 282 



2.5.2 Level of contamination  283 

K-means clustering was applied to assess the level of contamination in plastic packaging within 284 

the testing dataset. The images were loaded and converted to greyscale, with each pixel represented 285 

as a vector based on its greyscale intensity. We selected the number of clusters to be 3. The 286 

centroids of each cluster were initialized, and for each pixel in the image, a similarity measure was 287 

calculated to determine its proximity to each cluster centroid using a distance metric, such as 288 

Euclidean distance. Based on this calculation, the pixel was assigned to the cluster with the closest 289 

centroid, forming the initial clusters. Upon convergence, the algorithm produced the final 290 

clustering results. At this stage, each pixel was firmly assigned to a specific cluster, and the cluster 291 

centroids represented the average greyscale intensities of the pixels within their respective clusters. 292 

The number of pixels in each cluster was counted, and their ratios were calculated to determine 293 

the percentage of contamination. The level of contamination in the plastic packaging was classified 294 

into four categories: low contamination (< 25%), medium contamination (25% ≤ contamination < 295 

60%), high contamination (≥ 60%), and indeterminate due to multicoloured packaging or oily 296 

contamination (Taneepanichskul et al., 2024). 297 

2.5.3 Darkness 298 

The images in the testing dataset were loaded and converted into greyscale. Otsu’s threshold theory 299 

was applied to separate foreground and background. The average pixel of foreground was 300 

calculated to determine the darkness level. The darkness level was classified into three categories: 301 

bright (≥157), dark (<157) and transparent (Taneepanichskul et al., 2024). 302 

3. Results  303 

3.1 Average raw absorbance spectrum and pre-processed spectrum  304 

Samples of seven types of plastics including conventional plastic (PP, LDPE, HDPE and PET) and 305 

compostable plastics (PLA, PBAT and PHA) were passed underneath the HSI camera by a 306 

conveyor belt.  The data obtained was used to develop an identification and classification model 307 

of plastics with tomato ketchup contamination using machine learning algorithms. Raw 308 

absorbance spectrum of pristine plastic samples and plastic samples with 25% of surface covered 309 

with tomato ketchup were shown in Figure 4(a) and 4(b) respectively. Raw absorbance of these 310 

materials in training dataset was pre-processed using Savitzky-Golay (1st derivative, 2nd 311 



polynomial and 15 points window) method to identify spectral signatures. The pre-processed 312 

absorbance spectra are shown in Figure 4(c).  313 

 314 

Figure 4: Raw absorbance spectrum of (a) pristine plastics PP, PET, LDPE, HDPE, PLA, PBAT 315 

and PHA; (b) the same plastics with 25% of plastic surface contaminated with tomato ketchup; 316 

(c) pre-processed absorbance spectrum of plastics in training dataset (pristine and contaminated 317 

with tomato ketchup) 318 

3.2 Principal Component Analysis (PCA) 319 

Following the preprocessing of the absorbance spectrum, a principal component analysis (PCA) 320 

was carried out to achieve dimensional reduction. The spectra of pristine and tomato ketchup 321 

contaminated plastics from the training dataset were then utilized to generate a PCA score plot, as 322 

depicted in Figure 5(a). The results indicate that a substantial portion of the variance is effectively 323 

captured by the first principal component (PC1), which accounts for 46%, and the second principal 324 

component (PC2), which contributes 20%. Pristine plastics showed a high level of separability. 325 



Specifically, pristine HDPE and PP are situated in the second quadrant, while LDPE, PBAT, and 326 

PLA are in the third quadrant, and PET and PHA are in the fourth quadrant. Plastics contaminated 327 

with tomato ketchup, which are indicated by the red box, are all located in the first quadrant but 328 

show some overlap with each other. 329 

3.3 Performance of classification models  330 

3.3.1 Performance of classification models on calibration dataset 331 

The calibration dataset consists of pristine plastics and plastics with the low level of tomato 332 

ketchup (25%). We have applied five machine learning techniques to build classification model on 333 

training dataset. Figure 5(b), (c) and (d) illustrates the decision boundary of logistic regression, 334 

decision trees, and SVM classification respectively, providing a visual representation of how these 335 

algorithms partition the feature space to classify different plastic samples in training dataset. The 336 

decision boundary delineates the regions where each class is predicted, offering insights into the 337 

complexity and separability of the dataset. This visualization aids understanding of the underlying 338 

behaviour of the models and their ability to discriminate between different classes of plastics based 339 

on the provided features. However, ANN and PLS-DA do not have a straightforward decision 340 

boundary. ANN operates through complex transformations of the input data. The decision-making 341 

process in an ANN involves a series of interconnected neurons with weighted connections. PLS-342 

DA works by finding linear combinations of features that best separate the classes in the data. 343 

Unlike traditional classifiers, PLS-DA does not directly define a decision boundary. Instead, it 344 

projects the data into a new space where the classes are maximally separated along latent variables. 345 

Consequently, it is not as intuitive to visualize the decision boundary in the original feature space.  346 



 347 

Figure 5: (a) PCA score plot of training dataset, contaminated plastics identified within red box; 348 

(b) Logistic regression; (c) Decision tree; (d)   SVM for the training dataset. 349 

Table 3 shows the performance of each classification model. For logistic regression, SVM, 350 

decision trees, and ANN, sensitivity, specificity, and F1 score all reached 1, resulting in an overall 351 

accuracy of 100%. Conversely, other models achieved 100% accuracy. However, PLS-DA 352 

exhibited slightly lower accuracy (90.6%) due to its increased sensitivity to outliers, particularly 353 

noticeable when identifying plastics contaminated with tomato ketchup. 354 

 355 

 356 

 357 

 358 

 359 

 360 



Table 3: the performance of various machine learning algorithms in identifying plastics within 361 

the training dataset. 362 

Machine 

Learning 

Methods 

Polymer Sensitivity Specificity F1 Score  Overall 

Accuracy 

Logistic 

Regression, 

SVM, Decision 

Tree, ANN  

PLA 1 1 1 100% 

PBAT 1 1 1 

PHA 1 1 1 

PET 1 1 1 

PP 1 1 1 

HDPE 1 1 1 

LDPE 1 1 1 

PLS-DA  PLA 0.91 1 0.95 90.6% 

PBAT 1 1 1 

PHA 0.87 1 0.93 

PET 0.87 1 0.93 

PP 0.87 1 0.93 

HDPE 1 1 1 

LDPE 0.91 1 0.95 

 363 

3.3.2 Performance of classification models on cross-validation dataset   364 

Before testing the model with real world contaminated food packaging, we applied these models 365 

to classify types of materials in cross validation dataset to assess generalization of data which 366 

included a new type of contamination (mayonnaise). The results are summarised in Table 4.  367 

 368 

The logistic regression model performed well on datasets 95% accuracy. For PLA, PBAT, PET, 369 

HDPE, and LDPE it achieved perfect scores of 1 for sensitivity, specificity, and F1 score. However, 370 

it encountered challenges in accurately detecting PHA due to a new type of contamination and the 371 

presence of thin film. Consequently, instances of PHA were misclassified as PP, resulting in a 372 

decrease in sensitivity for PHA to 0.67 and a decrease in specificity for PP to 0.94. 373 



The SVM model achieved 94% accuracy.  For PLA, HDPE, and LDPE it achieved perfect scores 374 

of 1 for sensitivity and specificity. However, like logistic regression, its performance declined 375 

when classifying PHA and PBAT. The sensitivity of PHA and PBAT was 0.67 and 0.93 376 

respectively. Misclassifications of PHA (66.7%) and PBAT (6.7%) as PET led to decreases in 377 

specificity for PP and PET, resulting in values of 0.94 and 0.99 respectively. Consequently, the F1 378 

scores for PBAT, PHA, PP, and PET decreased to 0.96, 0.8, 0.85, and 0.97 respectively. 379 

 380 

The decision tree model achieved 88% accuracy, encountering difficulties in accurately identifying 381 

PBAT, PET, and PHA. Specifically, the sensitivity for PBAT, PHA, and PET was 0.8, 0.6, and 0.7 382 

respectively, while other types of plastics achieved a sensitivity of 1. PBAT was often misclassified 383 

as PP (13.3%) and LDPE (6.7%), while PET was misclassified as PP (26.7%). PHA suffered 384 

misclassifications as LDPE (6.7%) and PP (33.3%). Regarding specificity, PP and LDPE exhibited 385 

lower values compared to other plastic types, with scores of 0.88 and 0.98 respectively. 386 

Consequently, the F1 scores for PBAT, PHA, PP, and PET were 0.89, 0.75, 0.97, and 0.85 387 

respectively. 388 

The ANN model demonstrated strong overall performance with an accuracy of 90%. In the cross-389 

validation dataset, it achieved excellent sensitivity, specificity, and F1 scores for all types of plastic 390 

except for PHA and LDPE, where sensitivity dropped to 0.73 and 0.6 respectively.  Furthermore, 391 

the model exhibited misclassifications, 40% of LDPE being incorrectly labelled as PP, while 392 

26.7% of PHA samples were misclassified as PP. Additionally, the specificity of PP was low at 393 

0.89. Consequently, the F1 scores for PHA, PP, and LDPE were computed as 0.84, 0.75, and 0.75 394 

respectively. Overall, while the model achieved impressive accuracy and performance for most 395 

plastic types, there are evidently areas for improvement, particularly in accurately distinguishing 396 

PHA and LDPE, as well as reducing misclassifications, especially between LDPE and PP. 397 

The performance of PLS-DA fell short compared to other machine learning algorithms, achieving 398 

an overall accuracy of only 75%. Due to the introduction of a new type of contamination 399 

(mayonnaise), misclassifications occurred across various plastic types: 6.7% of PBAT, 20% of 400 

PET, 13.3% of PLA, 20% of PP, and 46.7% of LDPE could not be identified. Additionally, 13.3% 401 

of PBAT samples were misclassified as LDPE. Misclassifications were observed between various 402 

plastic types as well, with 20.3% of LDPE and 26.7% of PLA incorrectly labelled as PBAT, while 403 



6.7% of PHA samples were misclassified as PLA. Consequently, the sensitivity of PHA was the 404 

lowest at 0.47, followed by PBAT, LDPE, PET, and PP at 0.8, while PLA had a sensitivity of 0.6. 405 

For specificity, all polymers in the cross-validation dataset achieved values greater than 0.9, 406 

indicating strong performance in correctly identifying true negatives. However, PLA, PBAT, and 407 

PP exhibited slightly lower specificity compared to others, with values of 0.99, 0.92, and 0.98 408 

respectively. Additionally, the F1 score for PHA was the lowest at 0.63, followed by PBAT, PLA, 409 

LDPE, PET, and PP, which achieved scores of 0.7, 0.72, 0.8, and 0.89 respectively. 410 

Table 4: The performance of classification models on cross validation dataset 411 

Machine 

Learning 

Methods 

Polymer Sensitivity Specificity F1 Score  Overall 

Accuracy 

Logistic 

regression 

PLA 1 1 1 95% 

PBAT 1 1 1 

PHA 0.67 1 0.8 

PET 1 1 1 

PP 1 0.94 0.85 

HDPE 1 1 1 

LDPE 1 1 1 

SVM PLA 1 1 1 94% 

PBAT 0.93 1 0.96 

PHA 0.67 1 0.8 

PET 1 0.99 0.97 

PP 1 0.94 0.85 

HDPE 1 1 1 

LDPE 1 1 1 

Decision tree PLA 1 1 1 88% 

PBAT 0.8 1 0.89 

PHA 0.6 1 0.75 

PET 0.7 1 0.85 



PP 1 0.88 0.73 

HDPE 1 1 1 

LDPE 1 0.98 0.93 

ANN PLA 1 1 1 90% 

PBAT 1 1 1 

PHA 0.73 1 0.84 

PET 1 1 1 

PP 1 0.89 0.75 

HDPE 1 1 1 

LDPE 0.6 1 0.75 

PLS-DA PLA 0.6 0.99 0.72 75% 

PBAT 0.8 0.92 0.7 

PHA 0.47 1 0.63 

PET 0.8 1 0.89 

PP 0.8 1 0.8 

HDPE 1 1 1 

LDPE 0.8 0.98 0.82 

 412 

Figure 6 demonstrates the impact of contamination levels on the accuracy of various classification 413 

models. For plastic with a low level of contamination, logistic regression, SVM, ANN, and PLS-414 

DA achieved 100% accuracy, while the decision tree model reached 95% accuracy. As 415 

contamination levels increased to a medium level (50%), the accuracy of all models decreased: 416 

logistic regression and SVM dropped to 95%, while ANN and PLS-DA fell to 88%. At high 417 

contamination levels (75%), the accuracy further declined to 93% for logistic regression, 90% for 418 

SVM, 76% for the decision tree, 86% for ANN, and 50% for PLS-DA.  419 

 420 

 421 



 422 

Figure 6: The impact of contamination level on the accuracy of the model 423 

 424 

3.3.2 Performance of classification models on testing dataset   425 

The classification models were employed to categorize 30 real-world packaging samples with 426 

various types and level of contamination. The performance of each classification model showed in 427 

table 5.   428 

Table 5: The prediction accuracy of SVM, logistic regression, decision tree, ANN and PLSDA on 429 

testing dataset 430 

Machine 

Learning 

Methods 

Polymer Sensitivity Specificity F1 Score  Overall 

Accuracy 

SVM HDPE 1 1 1 99% 

PET 0.86 1 0.92 

PHA 1 1 1 

PLA 1 1 1 

PP 1 0.94 0.97 



Overall 0.97 0.99 0.98 

Logistic 

regression, 

decision tree, 

ANN  

HDPE 1 1 1 98% 

PET 1 1 1 

PHA 1 1 1 

PLA 1 0.96 0.8 

PP 0.86 1 0.92 

Overall 0.81 0.99 0.94 

PLS-DA HDPE 1 1 1 96% 

PET 1 1 1 

PHA 1 1 1 

PLA 1 0.89 0.57 

PP 0.79 1 0.88 

Overall 0.96 0.98 0.89 

 431 

From Table 5, it is evident that the overall accuracy of SVM surpasses that of other machine 432 

learning algorithms. However, SVM exhibits lower sensitivity in detecting PET packaging 433 

compared to other types of plastic. This is mainly due to the limited reflectance demonstrated by 434 

PET, resulting in a weak Short-Wave Infrared (SWIR) signal. Consequently, identifying thin or 435 

transparent materials like PET becomes inherently challenging. Additionally, the model tends to 436 

classify contamination as PP, leading to a lower specificity for PP compared to other material 437 

types see Figure 7. 438 



 439 

Figure 7: The example of (a) optical Images and (b) hyperspectral images of testing dataset (PP: 440 

pink, PHA, purple, PLA: blue) 441 

For logistic regression, decision tree and ANN, the sensitivity in detecting PP is the lowest at 442 

0.86. PP was misclassified as PLA and LDPE. Thus, the specificity and F1 score of PLA is 0.96 443 

and 0.8 respectively while other types of plastics are 1. The overall accuracy of these models is 444 

98%. The misclassified samples have translucent colour and dark colour. Logistic regression, 445 

decision tree, ANN classified translucent PP lid and red dark colour Japanese rice bowl was 446 

misclassified as PLA and LDPE respectively. Some pixels were misclassified by each model, 447 

leading to the same final classification outcome. For example, in Figure 8, we used various 448 

classification models to identify the type of food-contaminated spoon. The majority of pixels 449 

were classified as PHA. However, for spicy mayo contamination, SVM classified it as PP, while 450 

Decision Tree, Logistic Regression, and ANN each classified spicy mayo as a combination of PP 451 

(pink) and PLA (blue) but in different positions. PLS-DA classified it as a mix of unidentified 452 

pixels (Red) and PP (pink). 453 



For PLS-DA, the overall accuracy is the lowest at 96%. 21.4% of PP were classified incorrectly 454 

as PLA. Therefore, the sensitivity of PP drops to 0.79 and the specificity of PLA decreases to 455 

0.89. For F1-score, PLA achieves only 0.57 and PP achieves 0.88 while others are 1.  456 

Figure 8 shows a sample (spoon) made from PHA (purple) with some contaminated areas (spicy 457 

mayo) incorrectly classified as PLA (blue) or PP (pink). This highlights a limitation of PLS-DA 458 

in accurately identifying specific materials in contaminated regions compared to other algorithms 459 

used in the study. 460 

 461 

Figure 8: Material Classification of PHA Spoon with Spicy Mayo Using Various Machine 462 

Learning Models (Purple Pixel: PHA, Blue Pixel: PLA, Pink Pixel: PP and Red Pixel : 463 

Unidentified pixel) 464 

3.4 Material Properties of Contaminated Plastic Packaging in Testing Dataset  465 

In this set of experiments, we investigated which properties of contaminated plastic have impact 466 

on the accuracy of selected classification models. Specifically, we measured the size of packaging, 467 

the level of contamination, and darkness of the packaging. 468 



 469 

Figure 9: Accuracy of models for identifying plastic samples from the testing data set; (a) small, 470 

medium, and large plastics; (b) low, medium and high level of contaminated plastic packaging; 471 

(c) transparent, bright and dark plastic. 472 

 473 

 474 



3.4.1 Size  475 

The size of packaging was determined through surface area estimation algorithm. The average size 476 

of plastic packaging in the testing dataset (30 real world plastic packaging) was 63.94 cm2.  The 477 

number of small, medium and large packaging was 8,11 and 11 respectively.  478 

The results are shown in Figure 9 (a). For SVM, the system achieved 100% accuracy for small and 479 

medium plastic packaging but experienced a drop to 91% accuracy for large plastic packaging . 480 

Similarly, for ANN, logistic regression, and Decision Tree models, the accuracy in detecting small 481 

plastic packaging was 100%. For PLS-DA, the accuracy in identifying small plastic packaging was 482 

100%, but it decreased to 82% and 91% when detecting medium and large sizes, respectively. The 483 

accuracy of the models dropped when detecting large and medium plastics, as some samples in 484 

these categories have opaque colours. However, the accuracy for detecting brightly coloured 485 

plastics, regardless of size, is 100%.  Thus, sizes larger than 8 cm², which is the size of the smallest 486 

plastic packaging, have no impact on the model's accuracy. 487 

3.4.2 Level of contamination 488 

The average level of contamination of real-world plastic packaging was measured at 37%. Figure 489 

9(b) illustrates the accuracy of the system in identifying types of polymers with several degrees of 490 

contamination. In the testing dataset, there were 9 plastic packaging samples with a low level of 491 

contamination, 10 with medium contamination, and 6 with a high contamination level. 5 pieces of 492 

the plastic packaging could not have their contamination level measured due to the presence of 493 

labels and transparent oily contamination. 494 

The SVM models performed best, the level of contamination had a low impact on the accuracy of 495 

the system. Even with the highest level of contamination reaching 83%, the model still correctly 496 

identified the plastic. For ANN, logistic regression, and decision tree models, the accuracy of the 497 

model in identifying low-level contaminated plastic was 100%, but it decreased to 86% and 89% 498 

when identifying medium and highly contaminated packaging, respectively. Similarly, for PLS-499 

DA, the accuracy of the model in identifying plastic with a low level of contamination was 100%, 500 

but it dropped to 71% and 89% when identifying medium and high levels of contamination in 501 

plastic packaging, respectively. 502 

 503 



3.4.3 Darkness Level  504 

The darkness level was identified using average pixel value of greyscale image of samples in 505 

testing dataset.  The testing dataset consisted of 15 transparent plastic, 6 dark coloured plastic and 506 

9 brightly coloured plastics. The average darkness level was found to be a greyscale value of 157.  507 

The impact of darkness on successful identification is shown in Figure 9(c). 508 

The accuracy of SVM to detect dark coloured and bright coloured plastic was 100% but it dropped 509 

to 93% when identifying transparent plastic. For ANN, Logistic Regression and Decision Tree, the 510 

accuracy of models in identifying dark plastic and transparent was 83% and 93% respectively, the 511 

accuracy increased to 100% when identifying brightly coloured plastics. For PLS-DA, the 512 

accuracy to identify dark plastic (67%) was much lower than identifying brightly coloured plastic 513 

(100%). However, the accuracy in identifying transparent plastic was 93%. 514 

3.4.4 Food Contaminant Colour 515 

The colour of the contaminant exerted a significant impact on the accuracy of the system. This 516 

effect is attributed to its influence on the darkness of the material. The interplay between colour 517 

and darkness proved to be a crucial factor affecting the model's performance. Figure 10(a) displays 518 

a PLA lid surface with applied food contamination indicators in black, yellow, and green colours.  519 

 520 

Figure 10: Effect of colour of contamination. (a). PLA lid with orange, black and green 521 

contaminant; (b) the raw absorbance spectrum of PLA packaging with various colours of 522 

contaminant (black, orange and green).   523 



Black contaminants absorb lighter than contaminants of other colours, see figure 10(b). However, 524 

our classification models are robust due the use of HSI; it can correctly identify the type of plastic 525 

even when the contaminant is black. This result aligns with our previous research 526 

(Taneepanichskul et al., 2024).  527 

 528 

4 Discussion and Conclusions  529 

4.1 Classification model performance comparison 530 

The combination of HSI and machine learning has been applied to identify and classify types of 531 

plastics with various types of contamination and contamination level. The samples in this 532 

experiment included conventional plastics (PP, PET, LDPE and HDPE) and compostable plastics 533 

(PLA, PBAT and PHA). In the training dataset, machine learning including SVM, decision tree, 534 

logistic regression, ANN achieved 100% accuracy even when classifying the plastic with low level 535 

of tomato ketchup, the models still have impressive performance. On the other hand, PLS-DA 536 

demonstrated the lowest accuracy among the models, registering a rate of 90.6% in identifying 537 

plastic samples within the training dataset.  538 

To enhance robustness of model and mitigate overfitting, the utilization of cross validation dataset 539 

is crucial. Table 4 explains accuracy of algorithms on the cross-validation dataset, revealing that 540 

Logistic regression, SVM exhibit superior performance. These models perform well on the cross-541 

validation dataset, indicating that they can handle new, unseen data effectively including various 542 

levels mayonnaise contamination on sample surface.  543 

ANN and Decision Tree models exhibited accuracy rates 90% and 88% respectively in identifying 544 

contaminated plastic samples within the cross-validation dataset. These models encountered 545 

challenges, particularly in misclassifying PHA samples with high mayonnaise contamination. 546 

The obstacles faced by models in detecting contaminated PHA samples are multi-faceted. Firstly, 547 

the inherent characteristics of thin and transparent films pose difficulties, given their low 548 

absorption in the Short-Wave Infrared (SWIR) range. HSI relies on the absorption of light by 549 

molecular vibrations, and when dealing with thin and transparent films, the limited absorption 550 

features become a hurdle for the sensor to effectively detect and differentiate materials. Secondly, 551 



the presence of thin films introduces scattering effects, causing alterations in the direction of 552 

incident light. This scattering effect can introduce variability in the measured spectra, creating 553 

challenges in maintaining the consistency required for reliable classification. Thirdly, 554 

contamination on the surface of PHA induces shifts in the absorbance spectrum, further 555 

complicating the classification process. The introduction of contaminants alters the characteristic 556 

molecular vibrations, making it challenging for the models to accurately identify and categorize 557 

the material.  PLS-DA may face challenges when dealing with intricate relationships within the 558 

data, especially in scenarios where the underlying patterns are highly complex. Moreover, the 559 

dataset is small so other machine learnings performed better than PLS-DA.  560 

4.2 Influence of material properties on the performance of the models  561 

Our focus extended to three material properties: size, level of contamination, and darkness. An 562 

analysis reveals no discernible correlation between the size of the material (particularly when 563 

exceeding 8 cm2) and the accuracy of the model. Surprisingly, the level of contamination 564 

demonstrated minimal influence on the system's accuracy. Darkness showed significant impact on 565 

the accuracy of the system. Opaque plastic is more difficult to be classified due to high light 566 

absorbance of SWIR region. Transparent plastic is also difficult to be identified due to the 567 

scattering of light.  568 

Black contaminants absorb lighter than contaminants of other colours, see figure 10(b). However, 569 

our classification models are robust; it can correctly identify the type of plastic even when the 570 

contaminant is black. This result aligns with our previous research (Taneepanichskul et al., 2024).  571 

Our SVM model for identifying polymer contamination performed comparably to the PLS-DA 572 

model developed by Bonifazi, both achieving a sensitivity of 0.99. However, our model was 573 

applied to packaging with a higher level of contamination (Bonifazi et al., 2021). Additionally, 574 

Cucuzza's Hierarchical PLS-DA model demonstrated impressive accuracy, reaching up to 1.0. 575 

These findings highlight that the integration of hyperspectral imaging with machine learning 576 

significantly enhances the recycling rate by accurately identifying polymer contamination  577 

(Cucuzza et al., 2021). Krasniewski applied various machine learning techniques to identify 11 578 

types of polymers, finding that PET had the lowest accuracy due to its transparency, which aligns 579 

with our results (Kraśniewski et al., 2021). Importantly, our SVM model developed here enhances 580 

the performance of our previous PLS-DA model (Taneepanichskul et al., 2023). Even with highly 581 



contaminated packaging, the SVM model can identify polymers with very high accuracy, whereas 582 

our previous PLS-DA model could only accurately identify pristine plastics with accuracy 583 

dropping to 75% for highly contaminated plastics. 584 

 585 

4.3 Application of HSI in anaerobic digestion, in-vessel composting and recycling plant for 586 

detecting food contaminated compostable plastics. 587 

In anaerobic digestion (AD) and in-vessel composting (IVC), the first step involves sorting the 588 

waste. Pre-consumer waste, often referred to as source-separated, includes a wide range of organic 589 

materials and other contaminants. The primary task is to remove all packaging and separate organic 590 

matter from non-organic materials such as metals, minerals, dirt, and various unexpected objects. 591 

This ensures that only appropriate organic materials are processed further, improving efficiency 592 

and output quality (AnaerobicDigestion, 2023). 593 

Depackaging and separation are carried out using machines called depackagers. The reject stream 594 

from these machines consists of packaging materials, including contaminated plastics, cardboard, 595 

glass, and metal. After the separation process, IVC primarily relies on manual sorting combined 596 

with visual inspection to identify compostable plastics, which is labor-intensive and costly 597 

(WRAP, 2009). Contaminated plastics that cannot be composted are sent to landfill or incineration. 598 

Similarly, in AD, all contaminated plastics are directed to landfill or incineration (Taneepanichskul 599 

et al., 2022). 600 

The integration of hyperspectral imaging (HSI) with machine learning methods can enhance the 601 

system by reducing the landfill and incineration of plastics and increasing recycling and 602 

composting rates. With a detection system in place, compostable plastics can be reintroduced into 603 

the system, and recyclable plastics can be detected and sent to recycling plants. 604 

If recycling plants were employing this detection system, a high percentage of food contaminated 605 

compostable plastics can be identified and redirected to composting facilities for proper 606 

processing. Additionally, the system can help identify the 17% of recyclable plastics are rendered 607 

non-recyclable due to food contamination (Biffa, 2022). Implementing this system would require 608 

an automatic separation system to act on identification and characterisation provided by the HSI 609 

system. These already exist in modern waste recycling facilities. They are less common in AD and 610 



IVCs.  Investment in these facilities would have to be driven by a return on investment which is 611 

incentivised by lower number of plastics being sent to landfill and incineration. 612 

 613 

 614 
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